1.0 Obróbka drewna i materiałów drewnopochodnych

Pity tarczowe z ptytkami HM, Piły tarczowe DIA, Piły tarczowe zwykte,

Frezy nasadzane z ptytkami HM, Frezy nasadzane z ptytkami HSS,
Frezy ksztattowe DIA, Głowice frezowe, Głowice DIA, Akcesoria do frezów i głowic, Noże strugarskie / systemowe, Frezy trzpieniowe (do frezarek górnowrzecionowych i CNC), Akcesoria do frezów trzpieniowych,
Frezy trzpieniowe VHM (do grawerowania), Frezy trzpieniowe petnowęglikowe, Frezy trzpieniowe DIA, Akcesoria do DIA

Wiertła przelotowe i nieprzelotowe z HM, Wiertła puszkowe z HM,
Wiertła puszkowe DIA

2.0 Obróbka stali, metali, aluminium i PVC

Piły tarczowe z płytkami HM (do cięcia aluminium, metali i tworzyw
sztucznych), Piły tarczowe z płytkami HM (do cięcia stali),
Frezy tarczowo-piłkowe HSS - wg DIN, Frezy tarczowo-piłkowe VHM - wg DIN,
Frezy tarczowe HSS / HSS-E do przecinarek, Pity tarczowe z ptytkami HM (do przecinarek z posuwem automatycznym), Pity tarciowe,
Pity taśmowe bimetalowe, Brzeszczoty maszynowe, Brzeszczoty piłek ręcznych

Frezy trzpieniowe petnowęglikowe, Frezy trzpieniowe HSS	NARZĘDZIA DO FREZOWANA

Wiertła HSS
3.0 Obróbka innych materiałów 265

Piły tarczowe diamentowe (do elektronarzędzi), Pierścionki redukcyjne,
Piły ręczne (do betonu komórkowego), Narzędzia tarczowe

Wiertła z ptytkami HM, Dtuta, Groty, Bruzdowniki SDS+	NARZẸDZIA Do WIERCENIA

4.0 System modułowej ekspozycji SME

Regały na narzędzia GLOBUS, Pótki i wieszaki SME na narzędzia,
ELEMENTY EKSPOZYCJI NARZẸDZI NA REGALACH
Półki i wieszaki SME na akcesoria POS, Gabloty na narzędzia trzpieniowe,
Kosze i regały małe, Zawiesie na piły tarczowe, Akcesoria do regału standard, Regały siatkowe / półkowe, Przykłady ekspozycji grup produktowych, Pozycjonowanie modutów SME na regale

2.1 Narzędzia do cięcia - rowkowania

Piły tarczowe z płytkami HM linii ALUEX i STEEL-TECH 215
Frezy tarczowo-piłkowe HSS / VHM 229
Frezy tarczowe HSS / HSS-E do przecinarek 236
Piły tarczowe z płytkami HM linii COOL CUT 242
Pity tarciowe 245
Piły taśmowe bimetalowe 247
Brzeszczoty maszynowe 253
Brzeszczoty piłek ręcznych 256
2.2 Narzędzia do frezowania
Frezy trzpieniowe pełnowęglikowe 259
Frezy trzpieniowe HSS 262
2.3 Narzędzia do wiercenia

2.1.1	SZCZEGÓŁOWY SPIS TREŚCI				
	Pity tarczowe z ptytkami HM linii ALUEX		2.1.9	Brzeszczoty maszynowe	
	dane techniczne	216		dane techniczne	254
PS415	Pity z ptytkami HM serii ALUEX -5 do cięcia ksztattowników z Al i tworzyw sztucznych	219	BM100	Brzeszczoty maszynowe HSS	254
PS415	Piły z ptytkami HM serii ALUEX +5 do cięcia ksztattowników z Al i tworzyw sztucznych	220	BM600	Brzeszczoty długie HSS - otwornica	255
PS425	Pity z plytkami HM serii ALUEX MARATHON 1GA -5 do cięcia ksztattowników z Al, metali kolorowych i PVC	221	BM700	Brzeszczoty długie HSS - NPMd-P	255
PS425	Pity z ptytkami HM serii ALUEX MARATHON 1GA +5 do cięcia ksztattowników z Al, metali kolorowych i PVC	221	2.1.10	Brzeszczoty piłek ręcznych	
PS460	Pity z ptytkami HM serii SUPER ALUEX do cięcia ksztattowników z trudnoobrabialnych stopów Al	222	BP100	Brzeszczoty piłek rẹcznych - typ RAMa	256
PS495	Pity z ptytkami HM serii ALUEX -Cleaning PVCdo usuwania wyptywek/fazowania narożników PVC	223	BP105	Brzeszczoty piłek ręcznych - typ RAMb	256
PS496	Pity z płytkami HM serii ALUEX -Chamfering PVCdo fazowania listew przyszybowych	223	BP110	Brzeszczoty piłek ręcznych - typ RAMc	256
PS450	Piła z płytkami HM serii ALUEX -Groovingdo rowkowania i frezowania Al, metali kolorowych oraz PVC	224	BP115	Brzeszczoty piłek ręcznych - typ RAMd	257
PS455	Pity z ptytkami HM serii SEALUEX WB +15 do cięcia profili okiennych PVC z uszczelka gumowa	225	BP210	Brzeszczoty pitek ręcznych - typ RAMb HSS	257
2.1.2	Pity tarczowe z płytkami HM linii STEEL-TECH		BP300	Brzeszczoty piłek reçznych Bi-Metal FLEXER	258
PS810	Piły z płytkami HM serii STEEL-TECH do cięcia ksztattowników stalowych na pilarkach ukosowych	226	2.2.1	Frezy trzpieniowe pełnoweglikowe	
PS682	Pity z ptytkami HM serii STEEL-TECH Electro do pilarek ręcznych	227	LS070	Frezy petnowęglikowe wykańczające do PVC	260
2.1.3	Frezy tarczowo-pitkowe HSS - wg DIN		LS071	Frez pełnowẹglikowy z pilotem prowadzącym do PVC	260
	dane techniczne	230	LS220	Frez petnoweglikowy wykańczajacy - pozytyw	261
$\begin{aligned} & \text { FP110 } \\ & \text { FP120 } \end{aligned}$	Frezy tarczowo-piłkowe o geometrii ostrza A i Aw 5° do cięcia metali	232	LS232	Frez petnowęglikowy (teowy) z pilotem prowadzącym do PVC	261
$\begin{aligned} & \text { FP130 } \\ & \text { FP140 } \end{aligned}$	Frezy tarczowo-piłkowe o geometrii ostrza B i Bw 15° do cięcia metali	234	2.2.2	Frezy trzpieniowe HSS	
2.1.4	Frezy tarczowo-pitkowe VHM - wg DIN		LS300	Frezy trzpieniowe HSS do obróbki metali, Al i PVC	262
FP910 FP930	Frezy tarczowo-piłkowe VHM o geometrii ostrza A5 i B15 ${ }^{\circ}$ do cięcia metali	235	2.3.1	Wiertta HSS	
2.1.5	Frezy tarczowe HSS / HSS-E do przecinarek		LS580	Wiertła HSS do klamkownic	263
	dane techniczne	236			
FP220	Frezy HSS o geometrii ostrza Bw 18° do wolnoobrotowych przecinarek	239			
FP2	Frezy HSS i HSS-E do wolnoobrotowych przecinarek - na zamówienie	240			
FP	Powłoki PVD na zamówienie	241			
2.1.6	Piły tarczowe z płytkami HM linii COOL CUT do przecinarek z posuwem automatycznym				
	dane techniczne	242			
PS830	Pity z ptytkami HM serii COOL-CUT do cieccia stali i metali kolorowych na przecinarkach z posuwem automatycznym	244			
2.1.7	Pity tarciowe				
PM010	Pity tarczowe do cięcia tarciowego	245			
2.1.8	Piły taśmowe bimetalowe				
	dane techniczne	248			
PX100	Piły taśmowe serii PROF-CUT do cięcia metali	250			
PX110	Pity taśmowe serii PROF-CUT Plus do cięcia metali	250			
PX200	Piły taśmowe serii UNI-CUT do cięcia metali	251			
SZCZEGÓŁOWY SPIS TREŚCI					

	Pity tarczowe z ptytkami HM								
	PS415 (GA-5)	PS415 (GA+5)	PS425(1GA-5)	PS425(1GA+5)	PS460	PS495	PS496	PS450	
Materiat obrabiany									
Mosiądz	Δ	Δ			Δ			\triangle	
Miedż, Braz	A	A	Δ	Δ	\triangle			A	
Aluminium	A	A	A	A	Δ			A	
Twarde stopy aluminium	Δ	\triangle			A			\triangle	
Tworzywa sztuczne	A	A	A	A	Δ			A	
Profle PVC	-	A	A	A	\triangle	-	-	A	
Ptyta warstwowa					Δ				
Drewno									
	Pity tarczowe z ptytkami HM			Frezy tarczowo-piłkowe		Frezy tarczowe HSS / HSS-E			
	PS455	PS810	PS682	FP110-FP140	FP910-FP930	FP220	FP2..- (HSS)	FP2.5-(HSS-E)	
Materiał obrabiany									
Tytan, stopy tytanu, Inconel	-								
Stal żaroodporna	A							Δ	
Stal nierdzewna				Δ	Δ		Δ	A	
Stal ulepszona cieplnie pow. 50 HRc				Δ					
Stal stopowa Rm<1000 N/mm2					Δ	-		Δ	Δ
Stal stopowa Rm< $750 \mathrm{~N} / \mathrm{mm} 2$				Δ	A	-		\triangle	
Stal niskostopowa Rm< $500 \mathrm{~N} / \mathrm{mm} 2$				A	\triangle	\triangle	-	Δ	
Stal konstrukcyjna Rm>500 $/$ /mm2		A	-	A	Δ	\triangle	A	Δ	
Żeliwo				A	\triangle	Δ	-	Δ	
Mosiadz		Δ	Δ	A	-	Δ	\triangle	Δ	
Miedż, Brazz		\triangle	\triangle	-	Δ	Δ	-	\triangle	
Aluminium	\triangle		Δ	A	Δ	Δ	\triangle	Δ	
Twarde stopy aluminium	\triangle		Δ	-	\triangle	Δ	-	\triangle	
Tworzywa sztuczne	Δ		Δ	Δ	Δ	Δ	\triangle	Δ	
Profle PVC	-	\triangle	\triangle	Δ	\triangle	\triangle	\triangle		
Ptyta warstwowa		A	A	A	Δ	Δ	Δ		

Legenda:

- narzedzia dedykowane do obróbki danego materiału
\triangle - narzędzia mogą obrabiać materiat
brak trójkącika - narzędzia nie nadają się do obróbki danego materiatu

PIŁY TARCZOWE Z PŁYTKAMI HM

Minimalne średnice tarcz zaciskowych i maksymalne obroty pił z węglikami spiekanymi (DNPDe):

Info: W kolumnie RPM max podano maksymalne obroty pił dla prędkości skrawania Vs $=100 \mathrm{~m} / \mathrm{s}$, a w kolumnie RPM opt optymalne obroty pił. Optymalne obroty gwarantujące dużą wydajność oraz długa żywotność piły obliczone zostały z uwzględnieniem parametrów/prędkości skrawania w granicach $50 \div 90 \mathrm{~m} / \mathrm{s}$ oraz mając na uwadze różne rodzaje/gatunki/typy ciętych materiałów. Pamię̧aj: efektywne i wydajne cięcie uzależnione jest nie tylko od obrotów piły, prędkości skrawania dla danego rodzaju materiału, specyfikacji technicznej maszyny oraz samego układu cięcia danego detalu na maszynie, ale również od wielu innych czynników występujących na danej linii produkcyjnej.Dlatego jeżeli potrzebujesz precyzyjnego doboru narzędzi koniecznie skontaktuj się z naszym regionalnym Doradcą Technicznym - dane kontaktowe znajdziesz na przedostatniej stronie katalogu.

Zalecane prędkości skrawania w zależności od rodzaju ciętego materiału:

Materiat	
Prędkość skrawania $[\mathrm{m} / \mathrm{s}]$	
drewno miękkie	
drewno miękkie mokre	$60-100$
drewno twarde	$70-100$
ptyta pilśniowa miękka	$60-90$
ptyta pilśniowa twarda	$60-100$
ptyta wiórowa	$50-80$
ptyta MDF	$60-80$
sklejka	$60-80$
ptyta z duroplastów	$50-80$
ptyta z termoplastów	$15-50$
profile z termoplastów	$40-80$
stopy z Al	$40-80$
profile ze stopów z Al	$20-40$
profile stalowe	$40-60$
ptyta gipsowa	$20-25$
ptyta mineralna, suporeks	$50-70$

Wykres obrotów oraz parametrów skrawania:
obroty pity n [obr/min]

Wykres parametrów skrawania:

posuw/ząb (mm/ząb) P-posuw (m/min)

Dobór podziałki uzębienia pił ALUEX w zależności od grubości przecinanych detali:

Przy doborze podziałki uzębienia należy się kierować następującymi zasadami:

- w przecinanym materiale powinny się znajdować co najmniej 2-3 zęby piły
- im twardszy i cieńszy przecinany materiał tym mniejsza podziałka uzębienia (większa ilość zębów)
- im miększy i grubszy przecinany materiał tym większa podziałka (mniejsza ilość zębów)

Zalecane prędkości skrawania w zależności od rodzaju ciętego materiału:

- płyta z duroplastów - $15-50 \mathrm{~m} / \mathrm{s}$
- ptyta lub profile z termoplastów - $40-80 \mathrm{~m} / \mathrm{s}$
- materiały petne z Al - $20-40 \mathrm{~m} / \mathrm{s}$
- profile z Al - $40-60 \mathrm{~m} / \mathrm{s}$

Parametry piły i typ maszyny:

Średnica \times średnica otworu	
(mm)	
400×30	Haffner, LGF, Rapid, Ulmia, Wegoma
400×32	Pressta Eisele
400×40	Eisele
400×50	Kaltenbach
420×30	Elumatec, Haffner, Rapid, Ulmia, Urban, Wegoma
450×30	Haffner, LGF, Mayer, Pfeiffer, Rapid, Urban
500×30	Elumatec, Haffner, LGF, Martin, Pfeiffer, Pressta Eisele, Rapid, Urban
500×32	FOM Industrie
500×50	Pressta Eisele
500×80	Schirmer, Wegoma
520×30	Elumatec, Graule
550×30	Elumatec, LGF, Rapid, Urban
550×32	Emmegi
600×30	Graule, Stegmaier, Stürtz
600×40	Pressta Eisele

CECHY / KORZYŚCl:

- bardzo wysoka dokładność wykonania dysku, specjalnie dobrany węglik spiekany oraz odpowiedni profil uzębienia GA - 5° / trapezowo-płaski/ gwarantują długą żywotność narzędzia oraz bardzo dobrą jakość cięcia
- dysk piły wyważany dynamicznie eliminuje wibracje w czasie cięcia, co w sposób znaczący wpływa na wyższą jakość przecinanych powierzchni
- odpowiednie naprężenie dysku zapewnia wysoką sztywność ośrodka, co wpływa na stabilną pracę pił
szerokie możliwości w zakresie ostrzenia węglika spiekanego - pozwalają rozwiązywać problemy w cięciu oraz sprostać dużym wymaganiom jakościowym
piły nisko szumowe - obniżony poziom hałasu w procesie cięcia

ZASTOSOWANIE:

cięcie kształtowników ze stopów Al (miękkich - wyciskanych) o grubości ścianki nie przekraczającej 3 mm
przeznaczone również do cięcia profli z PVC (tworzyw sztucznych) o grubości ścianki nie przekraczajacej 3 mm

- sprawdzają się także w innych zastosowaniach, podczas cięcia profli z metali kolorowych, takichjak miedź, mosiądz, brąz z zachowaniem odpowiednio dobranych parametrów pracy piły
przy doborze piły należy zwrócić uwage na ilość zębów (podziałkę uzębienia) kierujac się zasada: im twardszy i cieńszy przecinany materiał tym mniejsza podziałka (większa ilość zębów)
- w celu uzyskania jak najlepszych powierzchni zaleca się zastosowanie prawidłowego docisku materiału w czasie cięcia

| Index | | | | \square | $5^{1} \\|^{2} \cdots$ | ∞ | | 4 | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | mm | | | il $\times d_{0} / d_{p}$ | szt. | |
| PS415-0160-0002 | 160 | 20 | 2,5 | 1,8 | 56 | - | - | 1 | 5900855100243 |
| PS415-0160-0004 | 160 | 30 | 2,5 | 1,8 | 56 | - | - | 1 | 5900855100267 |
| PS415-0180-0003 | 180 | 30 | 2,5 | 1,8 | 54 | - | - | 1 | 5900855100045 |
| PS415-0200-0008 | 200 | 30 | 2,2 | 1,6 | 100 | - | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100069 |
| PS415-0200-0004 | 200 | 30 | 2,5 | 1,8 | 60 | - | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100076 |
| PS415-0200-0006 | 200 | 32 | 2,2 | 1,6 | 100 | - | $2 \times 10 / 60$ | 1 | 5900855100083 |
| PS415-0216-0001 | 216 | 30 | 2,8 | 2,2 | 72 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100137 |
| PS415-0250-0009 | 250 | 30 | 2,2 | 1,6 | 100 | - | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100090 |
| PS415-0250-0002 | 250 | 30 | 3,2 | 2,5 | 80 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100144 |
| PS415-0250-0006 | 250 | 32 | 2,2 | 1,6 | 100 | - | $2 \times 10 / 60$ | 1 | 5900855100106 |
| PS415-0280-0006 | 280 | 32 | 3,2 | 2,5 | 88 | Cu | $2 \times 10 / 60$ | 1 | 5900855119924 |
| PS415-0300-0002 | 300 | 30 | 3,2 | 2,5 | 96 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100151 |
| PS415-0300-0004 | 300 | 30 | 3,2 | 2,5 | 120 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855109536 |
| PS415-0305-0003 | 305 | 30 | 2,8 | 2,2 | 96 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855173636 |
| PS415-0315-0003 | 315 | 30 | 3,2 | 2,5 | 96 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100168 |
| PS415-0330-0002 | 330 | 30 | 3,4 | 2,8 | 96 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100175 |
| PS415-0350-0002 | 350 | 30 | 3,2 | 2,5 | 108 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100182 |
| PS415-0350-0005 | 350 | 30 | 3,6 | 3,0 | 108 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855100205 |
| PS415-0350-0001 | 350 | 32 | 3,2 | 2,5 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100274 |
| PS415-0380-0001 | 380 | 32 | 4,0 | 3,4 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100281 |
| PS415-0400-0002 | 400 | 30 | 4,0 | 3,4 | 96 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100298 |
| PS415-0400-0006 | 400 | 30 | 4,0 | 3,4 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100304 |
| PS415-0400-0003 | 400 | 30 | 4,0 | 3,4 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100311 |
| PS415-0400-0101 | 400 | 32 | 4,0 | 3,4 | 96 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855112352 |
| PS415-0400-0028 | 400 | 32 | 4,0 | 3,4 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855106962 |
| PS415-0420-0011 | 420 | 40 | 4,0 | 3,4 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855112376 |
| PS415-0420-0104 | 420 | 30 | 4,0 | 3,4 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855112376 |
| PS415-0450-0001 | 450 | 30 | 4,0 | 3,4 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100328 |
| PS415-0450-0117 | 450 | 32 | 4,0 | 3,4 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855084802 |
| PS415-0500-0001 | 500 | 30 | 4,0 | 3,4 | 160 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100335 |
| PS415-0500-0003 | 500 | 30 | 4,2 | 3,6 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100342 |
| PS415-0500-0138 | 500 | 32 | 4,2 | 3,6 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855144490 |
| PS415-0550-0110 | 550 | 30 | 4,4 | 3,2 | 160 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855115797 |
| PS415-0600-0001 | 600 | 30 | 4,4 | 3,8 | 160 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855100526 |

[^0]

Index	$\{\bigcirc\}^{4}$				$5^{1} \mathfrak{n}^{2}$	\bigcirc			$\|\mid$
	mm	mm	mm	mm			il $\times \mathrm{d}_{0} / \mathrm{d}_{\mathrm{p}}$	szt.	
PS415-0160-0003	160	20	2,5	1,8	56	-	-	1	5900855100250
PS415-0160-0001	160	30	2,5	1,8	56	-	-	1	5900855100236
PS415-0180-0002	180	30	3,0	2,5	54	Cu	-	1	5900855100359
PS415-0200-0003	200	30	2,5	1,8	60	-	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100366
PS415-0200-0002	200	30	3,0	2,5	60	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100373
PS415-0250-0001	250	30	3,2	2,5	80	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100380
PS415-0260-0001	260	30	2,5	2,0	100	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100397
PS415-0300-0001	300	30	3,2	2,5	96	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100403
PS415-0315-0002	315	30	3,2	2,5	96	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100410
PS415-0350-0009	350	30	3,2	2,5	78	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100434
PS415-0350-0003	350	30	3,2	2,5	108	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855100441
PS415-0400-0007	400	30	4,0	3,4	96	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855131056
PS415-0400-0004	400	30	4,0	3,4	120	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855100472
PS415-0400-0030	400	32	4,0	3,4	108	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855113489
PS415-0450-0002	450	30	3,7	3,0	120	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855100489
PS415-0500-0016	500	30	5,0	4,0	72	Cu	2x8/42	1	5900855100502
PS415-0500-0100	500	30	4,2	3,6	120	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855108539
PS415-0500-0002	500	30	4,0	3,4	160	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855100496
PS415-0500-0005	500	32	4,2	3,6	120	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855103466
PS415-0550-0115	550	30	4.4	3,8	110	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855119122
PS415-0550-0002	550	30	4,4	3,2	160	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855100519
PS415-0550-0159	550	32	4.4	3,2	160	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855176439
PS415-0550-0228	550	32	4,4	3,6	128	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855228718
PS415-0550-0011	550	80	4,4	3,6	160	Cu	6x9/100	1	5900855128469

Legenda: il - ilość otworów zabierakowych, d_{0} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów. INFO: Piła z indexu PS415-0350-0009 - geometria ostrza GA10.

CECHY / KORZYŚCl:

- piła o ujemnym kącie natarcia zęba, dedykowana do cięcia kształtowników o grubości ścianki nie przekraczajacej $3,0 \mathrm{~mm}$, wykonanych z miękkich stopów Al, metali kolorowych oraz PVC
- zastosowanie specjalnego gatunku płytek z węglika spiekanego znacznie zwiększa żywotność pi !!!!
- specjalny typ uzębienia 1GA zapobiega zjawisku wykruszania się zębów oraz pozwala na uzyskanie jeszcze lepszej powierzchni po cięciu
- odpowiednie naprężenie dysku zapewnia wysoką sztywność ośrodka co wpływa na stabilną pracę tarczy
- nisko szumowa seria o bardzo dokładnych parametrach wykonania, wyważanym dynamicznie dysku o zacieśnionych tolerancjach niewyważenia

ZASTOSOWANIE:

- cięcie ksztattowników ze stopów aluminium (miękkich - wyciskanych) o grubości ścianki nie przekraczajaccej 3 mm
- przeznaczone również do cięcia profli z PVC (tworzyw sztucznych) o grubości ścianki nie przekraczającej 3 mm
- sprawdzają się także w innych zastosowaniach, podczas cięcia profli z metali kolorowych takich jak miedź, mosiądz, brąz z zachowaniem odpowiednio dobranych parametrów pracy piły
- przy doborze piły należy zwrócić uwagę na ilość zębów (podziałkę uzębienia) kierując się zasadą: im twardszy i cieńszy przecinany materiał tym mniejsza podziałka(większa ilość zębów)
- w celu uzyskania jak najlepszych powierzchni zaleca się zastosowanie prawidłowego docisku materiału w czasie cięcia

| Index | | | \square | | $5^{1} \\|^{2} \cdots$ | | | 4 | \|||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | mm | | | il $\times \mathrm{d}_{0} / \mathrm{d}_{\mathrm{p}}$ | szt. | |
| PS425-0300-0001 | 300 | 30 | 3,2 | 2,5 | 96 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855246057 |
| PS425-0350-0001 | 350 | 30 | 3,2 | 2,5 | 108 | Cu | $2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$ | 1 | 5900855246071 |
| PS425-0350-0003 | 350 | 32 | 3,2 | 2,5 | 108 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246095 |
| PS425-0400-0001 | 400 | 30 | 4,0 | 3,4 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246101 |
| PS425-0400-0003 | 400 | 32 | 4,0 | 3,4 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246125 |
| PS425-0500-0001 | 500 | 30 | 4,0 | 3,4 | 160 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246132 |
| PS425-0500-0002 | 500 | 30 | 4,2 | 3,6 | 120 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246149 |
| PS425-0550-0002 | 550 | 30 | 4,4 | 3,2 | 160 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246170 |
| PS425-0600-0001 | 600 | 30 | 4,4 | 3,8 | 160 | Cu | $2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$ | 1 | 5900855246187 |

Legenda: il - ilość otworów zabierakowych, d_{0} - średnica otworów zabierakowych, d_{p} - średnica podziatowa otworów.

Piła z płytkami HM serii ALUEX MARATHON 1GA +5
do cięcia ksztattowników z Al, metali kolorowych i tworzyw sztucznych

CECHY / KORZYŚCl:

- piła o dodatnim kącie natarcia zęba, dedykowana do cięcia kształtowników o grubości ścianki nie przekraczającej $3,0 \mathrm{~mm}$, wykonanych z miękkich stopów Al, metali kolorowych oraz PVC
- zastosowanie specjalnego gatunku płytek z węglika spiekanego znacznie zwiększa żywotność pi !!!
- specjalny typ uzębienia 1GA zapobiega zjawisku wykruszania się zębów oraz pozwala na uzyskanie jeszcze lepszej powierzchni po cięciu
- odpowiednie naprężenie dysku zapewnia wysoką sztywność ośrodka co wpływa na stabilną pracę tarczy
- nisko szumowa seria o bardzo dokładnych parametrach wykonania, wyważanym dynamicznie dysku o zacieśnionych tolerancjach niewyważenia

ZASTOSOWANIE

- cięcie ksztattowników ze stopów Al (miękkich - wyciskanych) o grubości ścianki powyżej 3 mm
- przeznaczone również do cięcia profli z PVC (tworzyw sztucznych) o grubości ścianki powyżej 3 mm
- sprawdzają się także w innych zastosowaniach, podczas cięcia profili z metali kolorowych takich jak miedź, mosiądz, brąz z zachowaniem odpowiednio dobranych parametrów pracy piły
- przy doborze piły należy zwrócić uwagę na ilość zębów (podziałkę uzębienia) kierując się zasadą: przy doborze pity nalezy zwrócić uwagę na ilośc zębow (podziatkę uzębienia) kierujac się
im twardszy i cieńszy przecinany materiał tym mniejsza podziałka (większa ilość zębów)
- w celu uzyskania jak najlepszych powierzchni zaleca się zastosowanie prawidłowego docisku materiału w czasie cięcia

Index					$5^{1} \\|^{3} \ldots$			4	$\|\mid$
	mm	mm	mm	mm			il $\times \mathrm{d}_{0} / \mathrm{d}_{\mathrm{p}}$	szt.	
PS425-0300-0002	300	30	3,2	2,5	96	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855246064
PS425-0350-0002	350	30	3,2	2,5	108	Cu	$2 \times 7 / 42+2 \times 8,5 / 46+2 \times 10 / 60$	1	5900855246088
PS425-0400-0002	400	30	4,0	3,4	120	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855246118
PS425-0500-0003	500	30	4,2	3,6	120	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855246156
PS425-0550-0001	550	30	4,4	3,2	160	Cu	$2 \times 10 / 60+2 \times 11 / 63+2 \times 11 / 70$	1	5900855246163

Legenda: il - ilość otworów zabierakowych, d_{0} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów.

CECHY / KORZYŚCl:

- specjalny gatunek węglika o zwiększonej zawartości kobaltu oraz odpowiedniej twardości gwarantuje znaczne zwiększenie udarności i zabezpiecza zęby przed wykruszaniem jest to szczególnie istotne w przypadku cięcia twardych stopów aluminium
- dysk piły wyważany dynamicznie eliminuje wibracje w czasie cięcia, co w sposób znaczący wpływa na wyzsza jakośc przecinanych powierzchni
- odpowiednie naprężenie dysku zapewnia wysoką sztywność piły oraz wpływa na stabilną pracę narzędzia
- ilość zębów uzależniona jest od grubości obrabianego/przecinanego materiału
- pity nisko szumowe - obnizony poziom hałasu w procesie cięcia
- możliwość wykonania pity kotnierzowej na zamówienie ww/w podgrupie asortymentowe
- wykonywane na indywidualne zamówienie klienta po podaniu podstawowych danych typowymiarowych narzędzia, na podstawie rysunku lub na podstawie danych/parametrów obrabianego materiału

ZASTOSOWANIE:

- przeznaczone do cięcia twardych i trudnoobrabialnych stopów Al z zawartością $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Mn}$ lub Si charakteryzujących się m.in. wysoką twardością (stopy te występują najczęściej w postaci prętów lub petnych płyt)
- geometria uzębienia $\mathrm{GA}+5^{\circ}$ (pozytyw) zalecana jest do cięcie profili, a geometria GA-5 ${ }^{\circ}$ (negatyw) zalecana jest szczególnie do cięcie profili cienkościennych
- geometria uzębienia GA o kącie natarcia $+10^{\circ}$ (i większym) zalecane jest do cięcie materiałów petnych
- zastosowanie geometrii uzębienia 1GA zapobiega zjawisku wykruszania się zębów oraz pozwala na uzyskanie jeszcze lepszej powierzchni po cięciu
- zaleca się stosowanie uzębienia 1GC oraz pił w wersji kołnierzowej do cięcia twardych stopów Al w postaci profili o znacznych różnicach grubości ścianek (np. radiatory)

[^1]

CECHY / KORZYŚCl:

- specjalnie zaprojektowany typ i geometria uzębienia pozwalają na uzyskiwanie wysokiej wydajności oraz właściwej jakości powierzchni po obróbce
- dodatkowe dłuższe zęby z weqglika spiekanego (HM) umożiwiaja gtębsze podfrezowanie narożnika PVC
- odpowiednio dobrany gatunek ptytki HM zapewnia długą żywotność narzędzi
- dysk piły wykonany z obrobionej cieplnie blachy zapewnia stabilną pracę narzędzia
- wykonywane zamówienie klienta po podaniu podstawowych danych typowymiarowych narzędzia, na podstawie rysunku lub na podstawie danych/parametrów obrabianego materiału

ZASTOSOWANIE:

- piła realizująca proces frezowania/fazowania zewnętrznej strony narożnika okna PVC
- piła majaca za zadanie usuwanie wyptywki po zgrzaniu proftli PVC
- seria dedykowana do specjalistycznych maszyn przy produkcji stolarki otworowe z tworzyw sztucznych PVC
- często występuja jako piły lewe i prawe ze względu na stronę fazowania oraz kierunek obrotów - dlatego pamiętaj: przed zamówieniem piły koniecznie sprawdź DTR swojej maszyny

| | Index | | | \pm | \longrightarrow | $5^{1} \\|^{2}$ | | Fazowanie | Geometria | 4 | \||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | mm | mm | mm | mm | | il $\times \mathrm{d}_{0} / \mathrm{d}_{\mathrm{p}}$ | | | szt. | |
| 0 | PS495-0170-0001 | 170 | 20 | 4,5 | 3,2 | $16+4$ | 6x6,8/40 | prawe | W2R | 1 | 5900855177368 |
| 0 | PS495-0190-0001 | 190 | 20 | 4,5 | 3,2 | $16+4$ | 6x6,8/40 | prawe | W2R | 1 | 5900855177375 |
| 0 | PS495-0190-0002 | 190 | 22 | 4,5 | 3,2 | $16+4$ | 6x6,8/40 | lewe | W2R | 1 | 5900855177382 |
| 0 | PS495-0220-0002 | 220 | 20 | 4,5 | 3,2 | $28+4$ | 6x6,8/40 | prawe | 1GB | 1 | 5900855194990 |
| 0 | PS495-0250-0001 | 250 | 22 | 4,5 | 3,2 | $22+4$ | 6x6,8/40 | - | W2R | 1 | 5900855177399 |
| 0 | PS495-0280-0001 | 280 | 22 | 4,5 | 3,2 | $32+4$ | $6 \times 6 / 40$ | - | W2R | 1 | 5900855177405 |
| 0 | PS495-0300-0006 | 300 | 25 | 4,0 | 3,0 | $96+4$ | 1x5/70 | - | 1GB | 1 | 5900855211499 |

Legenda: il - ilość otworów zabierakowych, $d_{\text {- }}$ - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów, O-na zamówienie.

Piła z płytkami HM serii ALUEX -Chamfering PVC-
do fazowania listew przyszybowych

CECHY / KORZYŚCl:

- specjalistyczne pity o specjalnej geometrii ostrza i kącie natarcia $+5^{\circ}$
- zastosowanie pił z węglikami spiekanymi do fazowania gwarantuje dłuższa żywotność -
większą ilośćć cięć pomiędzy ostrzeniami
- precyzyinie wykonany dysk oraz odpowiednio dobrany gatunek weglika gwarantuje wysoka jakość fazowanej powierzchni
- szerokie możliwości w zakresie ostrzenia wegglika spiekanego, pozwalają rozwiązywać problemy w cięciu oraz sprostać dużym wymaganiom jakościowym

ZASTOSOWANIE:

- specjalistyczne piły przeznaczone do fazowanie listew PVC z uszczelką gumowa
- pracuja w komplecie z piłami gtównymi: PS415-0200-0008, PS415-0200-0006,

PS415-0230-0001, PS415-0230-0002, PS415-0250-0009, PS415-0250-0006, PS415-0260-0001

- dedykowane do procesów cięcia / fazowania przy produkcji stolarki otworowej

CECHY / KORZYŚCl:

- specjalnie zaprojektowany typ i geometria uzębienia pozwalają na uzyskiwanie wysokiej wydajności oraz właściwej jakości powierzchni po obróbce
- odpowiednio dobrany gatunek ptytki HM zapewnia długą żywotność narzędzi
- wykonywane na indywidualne zamówienie, po podaniu danych typowymiarowych narzędzia,
na podstawie rysunku lub na podstawie parametrów obrabianego materiału
- kąt natarcia uzależniony jest od głębokości rowka oraz twardości obrabianego materiału (w przypadku pił do rowkowania stosujemy najczęściej kąt natarcia o wartości $+5^{\circ}$)

ZASTOSOWANIE:

- piły do frezowania rowków prostokątnych w aluminium, metalach kolorowych oraz tworzyw sztucznych
- grubość rzazu dostosowana do szerokości frezowanego rowka
- ilość zębów dobierana w zależności od głębokości frezowanego rowka
- przy doborze piły należy zwrócić uwagę na ilość zębów (podziałkę uzębienia) kierując się zasada: im twardszy obrabiany materiał tym mniejsza podziałka (większa ilość zębów)

	Index	\bigcirc				$5^{1} \\|^{3}$			4	$\|\mid$
		mm	mm	mm	mm		-		szt.	
0	PS450-0114-0001	114	32	7,0	5,0	12	5°	-	1	5900855098762
0	PS450-0125-0006	125	22	6,0	4,1	32	10°	-	1	5900855199995
0	PS450-0125-0002	125	32	8,0	5,0	18	10°	-	1	5900855157797
0	PS450-0150-0007	150	30	7,0	5,0	36	10°	-	1	5900855183024
0	PS450-0150-0004	150	30	8,0	5,0	18	15°	-	1	5900855171304
0	PS450-0160-0003	160	32	5,0	3,0	36	5°	-	1	5900855128490
0	PS450-0160-0008	160	30	5,0	4,1	48	5°	-	1	5900855212724
0	PS450-0180-0004	180	20	6,0	4,8	24	5°	-	1	5900855225687
0	PS450-0180-0001	180	30	8,0	5,0	24	15°	-	1	5900855171298
0	PS450-0200-0004	200	30	6,0	4,0	32	5°	-	1	5900855139649
0	PS450-0220-0001	220	32	4,5	4,0	48	5°	-	1	5900855127608
0	PS450-0250-0019	250	30	5,0	3,9	40	5°	Cu	1	5900855205429
0	PS450-0250-0034	250	32	5,0	4,0	64	5°	-	1	5900855253529
0	PS450-0250-0016	250	40	6,0	5,0	40	5°	-	1	5900855191524
0	PS450-0250-0015	250	40	8,0	6,0	32	5°	-	1	5900855179003
0	PS450-0275-0001	275	40	8,0	6,0	32	10°	Cu	1	5900855202909
0	PS450-0280-0003	280	40	8,0	6,0	36	5°	-	1	5900855236157
0	PS450-0300-0006	300	30	8,0	6,0	16	10°	-	1	5900855171472
0	PS450-0350-0008	350	30	5,0	3,0	54	-5°	Cu	1	5900855261074

Legenda: \mathbf{O}-na zamówienie

CECHY / KORZYŚCl:

- bardzo wysoka dokładność wykonania dysku, specjalnie dobrany węglik spiekany oraz odpowiedni profil, geometria uzębienia WB+15 gwarantują dużą żywotność piły
- bardzo dobra jakość cięcia profili okiennych PVC ciętych razem z uszczelką gumową (eliminacja zjawiska szarpania uszczelki)
- dysk piły wyważany dynamicznie eliminuje wibracje w czasie cięcia, co w sposób znaczący wpływa na wyższą jakość przecinanych powierzchni
odpowiednie naprężenie dysku zapewnia wysoką sztywność ośrodka, co wptywa na stabilną pracę pit
- piły nisko szumowe - obniżony poziom hałasu w procesie cięcia

ZASTOSOWANIE:

- cięcie profili okiennych PVC, szczególnie dedykowane do profili z uszczelkami gumowymi
piły można stosować również do cięcia profili okiennych PVC bez uszczelki
- ilość zębów uzależniona jest od grubości obrabianego/przecinanego materiału
- przy doborze piły należy zwrócić uwagẹ na ilość zębów (podziałkę uzębienia) kierując się
zasada: im twardszy i cieńszy przecinany materiał tym mniejsza podziałka (większa ilość zębów)
-w celu uzyskania jak najlepszych powierzchni zaleca się zastosowanie prawidłowego docisku materiału w czasie cięcia
- ze względu na konstrukcję zęba zaleca się zachowanie szczególnej ostrożności w czasie eksploatacji pił, polegajacej na nie przeciążaniu uzębienia
- praca na zbyt dużych parametrach może prowadzić do niekontrolowanego wykruszenia wierzchotków zębów

Legenda: il - ilość otworów zabierakowych, d - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów, O-na zamówienie.
do cięcia kształtowników stalowych na pilarkach ukosowych

CECHY / KORZYŚCl:

- specjalny gatunek węglika spiekanego o zwiększonej zawartości kobaltu oraz odpowiedniej twardości gwarantuje znaczne zwiększenie udarności, co zabezpiecza zęby przed uszkodzeniem przy cięciu detali stalowych
- zaprojektowana geometria ostrza umożliwia uzyskiwanie wysokiej żywotności narzędzia oraz zapewnia dużą dokładność cięcia
- odpowiednio wykonany płaski korpus / dysk po obróbce cieplnej to jeszcze większa sztywność piły podczas procesów skrawania
- wprowadzenie technologii cięcia detali stalowych piłami HM na ukośnicach w miejsce dotychczas stosowanej technologii cięcia ściernicami, znacznie poprawia warunki BHP (zmniejsza zapylenie oraz hałas) i pozwala na uzyskiwanie powierzchni wolnej od gratu i przypaleń
- zakres typowymiarowy dostosowany do większości elektronarzędzi na rynku
- możliwość wykonania pił w większych średnicach zewnętrznych

ZASTOSOWANIE:

- cięcie kształtowników stalowych zimnowalcowanych ze stali konstrukcyjnej niestopowej - grubości ścianki < 3 mm
- możliwośś cięcia płyt warstwowych (wypetnionych pianką poliuretanowa, styropianem)
- wykorzystywane w przecinarkach/ukośnicach przystosowanych do cięcia stali
(na odpowiednich parametrach/obrotach)
- używajacc piłt do cięcia stali należy pamiętać o optymalnych parametrach ich pracy: $1050 \div 1900 \mathrm{obr} / \mathrm{min}$ - w zależności od średnicy pity
- zalecane prędkości obrotowe tarcz: $200 \mathrm{~mm}(1500 \div 1900 \mathrm{obr} / \mathrm{min})$,
$250 \mathrm{~mm}(1450 \div 1850 \mathrm{obr} / \mathrm{min}$), $260 \mathrm{~mm}(1450 \div 1850 \mathrm{obr} / \mathrm{min}$), $305 \mathrm{~mm}(1250 \div 1600 \mathrm{obr} / \mathrm{min}), 355 \mathrm{~mm}(1050 \div 1350 \mathrm{obr} / \mathrm{min})$

	Index			$\pm=$	$=\frac{1}{4}$	$5^{1} \mathfrak{n}^{3} \ldots$	Geometria		4	$\|\mid$
		mm	mm	mm	mm			il $\mathrm{xd} / \mathrm{d}_{\mathrm{p}}$	szt.	
	PS810-0200-0003	200	30	2,4	1,8	64	GC $+5^{\circ}$	-	1	5900855079235
0	PS810-0200-0008	200	30	2,2	1,6	100	GC-5 ${ }^{\circ}$	-	1	5900855185479
	PS810-0250-0004	250	30	3,2	2,5	80	GC $+5^{\circ}$	-	1	5900855034555
0	PS810-0250-0007	250	30	2,4	1,6	100	GC $+5^{\circ}$	-	1	5900855047784
0	PS810-0260-0003	260	30	2,2	1,8	80	GC+5 ${ }^{\circ}$	-	1	5900855164283
	PS810-0260-0001	260	30	2,5	2,0	100	GC $+5^{\circ}$	-	1	5900855034586
	PS810-0305-0013	305	25,4	2,5	2,0	80	GC $+10^{\circ}$	-	1	5900855185998
	PS810-0305-0014	305	30	2,5	2,0	80	GC $+10^{\circ}$	-	1	5900855194167
	PS810-0355-0007	355	25,4	2,2	1,8	90	$2 \mathrm{CC}+10^{\circ}$	-	1	5900855062220
0	PS810-0355-0001	355	25,4	2,2	1,8	90	$\mathrm{GC}+10^{\circ}$	4×11,5/55*	1	5900855034685
0	PS810-0355-0012	355	30	2,2	1,8	90	2GC $+10^{\circ}$	-	1	5900855092692

Legenda: il - ilość otworów zabierakowych, d_{0} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów, O - na zamówienie.
Info: Indeks PS810-0355-0001 - jeden otwór fio $11,5 \mathrm{~mm}$ dodatkowo przesunięty Z osi. ${ }^{\text {p }}$
do pilarek ręcznych

CECHY／KORZYŚC｜
－specjalny gatunek węglika spiekanego o zwiększonej zawartości kobaltu oraz odpowiedniej twardości gwarantuje znaczne zwiększenie udarności，co zabezpiecza zęby przed uszkodzeniem przy cięciu detali stalowych
－dysk piły wycięty techniką laserową z wysokogatunkowej stali ulepszonej termicznie－ wysoka dokładność wykonania oraz sztywność narzędzia podczas pracy
－specjalny typ oraz geometria uzębienia pozwala na uzyskiwanie właściwej wydajności cięcia
－wprowadzenie technologii cięcia detali stalowych piłami HM w miejsce dotychczas stosowanej technologii cięcia ściernicami znacznie poprawia warunki BHP－zmniejszenie zapylenia oraz hałasu －ostrzenie węglików spiekanych realizowane jest na sterowanych numerycznie ostrzarkach CNC wg．optymalnie zaprogramowanych parametrów pracy ściernicy i wg．specjalnego doboru jej charakterystyki
－zakres typowymiarowy dostosowany do większości elektronarzędzi na rynku

B

ZASTOSOWANIE
－piły tarczowe do tzw．zimnej technologii cięcia elementów stalowych umożliwiają skrawanie bez przypaleń na krawędziach obrabianego materiału
－seria przeznaczona do cięcia elementów wykonanych ze stali konstrukcyjnych takich jak： rury，kształtowniki，blachy trapezowe o grubości ścianki do $2,5 \mathrm{~mm}$
－cięcie stali miękkiej konstrukcyjnej z uzyciem pilarek ręcznych przystosowanych do cięcia stali（z odpowiednią prędkościa obrotową lub regulacja obrotów）
－używając pił do cięcia stali należy pamiętać o optymalnych parametrach
ich pracy： $1600 \div 3000 \mathrm{obr} / \mathrm{min}$－w zależności od średnicy piły
－zalecane prędkości obrotowe tarcz： $160 \mathrm{~mm}(2000 \div 3000 \mathrm{obr} / \mathrm{min})$ ） $185 \mathrm{~mm}(1800 \div 2500 \mathrm{obr} / \mathrm{min}$ ）， $200 \mathrm{~mm}(1700 \div 2400 \mathrm{obr} / \mathrm{min}$ ）． $210 \mathrm{~mm}(1600 \div 2300 \mathrm{obr} / \mathrm{min})$

Index	亚		$\pm=$	$\square=\frac{1}{4}$	$5^{1} \\|^{3 \ldots}$	号务	4	｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜
	mm	mm	mm	mm			szt．	
PS682－0160－0001	160	20	2，0	1，4	40	BOSCH GKS 55＋GCE，HILTI SCM 22－A， METABO MKS 18 LTX 58	1	5900855113045
PS682－0185－0001	185	30	2，0	1，4	48	EVOLUTION R185CCS，FURY1－B，RAGE－B，FLEX CSM 4060，HIKOKI CD7SA，MAKITA 4131， REXON MC1850R，STEELMAX SM S7 XP	1	5900855108706
PS682－0200－0001	200	30	2，0	1，4	50	AGP CS200，JEPSON 8200，FESTOOL TS 75	1	5900855108713
PS682－0210－0001	210	30	2，0	1,4	50	FESTOOL TS 75	1	5900855113052

Info：＊W przypadku zastosowania w／w tarcz do niektórych modeli pilarek wymagane jest zastosowanie pierścionków redukcyinych $30 / 25,4 \mathrm{~mm}$ lub $30 / 20 \mathrm{~mm}$ ．＊＊Producenci podanych w tabeli modeli pilarek ręcznych w trakcie ważności niniejszego katalogu narzędzi GLOBUS mogą modytikować swoje produkty．W związku z tym prosimy，aby przed zakupem konkretnego typowymiaru piły sprawdzić posiadany typ pilarki（szczególnie ważne w przypadku：średnicy zewnętrznej piły oraz otworu wewnettrznego／osadczego pity）．

FREZY TARCZOWE HSS / VHM / PIŁY TARCZOWE HM / NCV

Rodzaje uzębienia frezów tarczowo-piłkowych:

Nazwa	Rysunek	Oznaczenie	Kat γ dla typu narzędzia		
			$\mathrm{N} \pm 2^{\circ}$	$\mathrm{H} \pm 2^{\circ}$	$\mathrm{W} \pm 2^{\circ}$
Zab trójkątny	Mon	A	5°	0°	10°
Ząb trójkątny z przemiennymi fazami	MNA	Aw	5°	0°	10°
Zab tukowy	nuin	B	15°	8°	25°
Ząb łukowy z przemiennymi fazami	nutin	Bw	$\begin{aligned} & 15^{\circ} \\ & 18^{\circ *} \end{aligned}$	8°	25°
Ząb tukowy z zębem tnącym i wybierajacym		C (HZ)	18°	8°	25°
Ząb tukowy z rozdzielaczem wióra		Bf (BR)	18°	8°	25°

Przykłady stosowania odpowiednich frezów tarczowo-piłkowych w zależności od obrabianego materiału:

Materiat		Typ narzędzia	Materiat	Typ narzędzia
Stal miękka	Rm do 500 MPa	N, (W)	Stopy miedzi kruche	N, (H)
Stal średnio twarda	Rm do 800 MPa	N	Stopy cynku	W, (N)
Stal twarda ciaggliwa	Rm do 1000 MPa	N, (H)	Stopy aluminiowe miękkie	W
Stal twarda ciaggliwa	Rm do 1300 MPa	H	Stopy aluminiowe średnio twarde	N, (W)
Staliwo	-	N, (H)	Stopy aluminiowe hartowane, mała szybkość cięcia	N
Żeliwo szare	HB do $180 \mathrm{~kg} / \mathrm{mm}^{2}$	N	Stopy aluminiowe hartowane, duża szybkość cięcia	W
Żeliwo szare	HB ponad $180 \mathrm{~kg} / \mathrm{mm}^{2}$	N, (H)	Stopy magnezu	N, (W)
Żeliwo ciągliwe	-	N	Tworzywa sztuczne bezwarstwowe	N, (W)
Miedź, stopy miedzi miękkie	-	W, (N)	Tworzywa sztuczne warstwowe	w

Legenda:

N - typ narzędzia ogólnie do stali budowlanych, konstrukcyjnych, miękkiego żeliwa, średnio twardych metali nieżelaznych
H - typ narzędzia dla szczególnie twardych i o wysokiej wytrzymałości materiałów
W - typ narzędzia dla bardzo miękkich i ciągliwych materiatów
Uwagi:
Typ narzędzia nieoznaczony nawiasem jest szczególnie zalecany
Narzędzia - frezy o uzębieniach podanych w nawiasach mogą być używane do obróbki podanych materiałów tylko w szczególnych przypadkach.

Legenda: - wykonanie podstawowe * - frezy tarczowo piłkowe do przecinarek

Prędkość obrotowa (w obr/min):

Zalecenia dla osiągnięcia wysokiej wydajności cięcia frezami tarczowo-piłkowymi ogólnego przeznaczenia:

1. Właściwe ostrzenie metodami zapewniającymi wykonanie odpowiedniego kąta natarcia γ i przyłożenia α.
2. Dobór odpowiedniej podziałki zęba do przekroju poprzecznego i rodzaju ciętego materiału.
3. Właściwy dobór szybkości skrawania oraz posuwów.
4. Stosowanie odpowiednich środków chłodząco-smarujących.
5. Unikanie powstawania narostów na powierzchni frezów.

| Index | | | | $\sqrt[1]{2}_{\sqrt[3]{\ldots}}$ | Geometria | | 4 | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | | | mm | szt. | |
| FP110-0020-0001 | 20 | 5 | 0,50 | 48 | A | - | 5 | 5900855008112 |
| FP110-0020-0009 | 20 | 5 | 0,60 | 48 | A | - | 5 | 5900855056571 |
| FP110-0020-0003 | 20 | 5 | 0,80 | 48 | A | - | 5 | 5900855008136 |
| FP110-0025-0025 | 25 | 8 | 0,50 | 48 | A | - | 5 | 5900855102131 |
| FP110-0025-0010 | 25 | 8 | 0,50 | 64 | A | - | 5 | 5900855055727 |
| FP110-0025-0023 | 25 | 8 | 0,60 | 48 | A | - | 5 | 5900855093330 |
| FP110-0025-0011 | 25 | 8 | 0,80 | 48 | A | - | 5 | 5900855056182 |
| FP110-0025-0024 | 25 | 8 | 0,80 | 64 | A | - | 5 | 5900855093583 |
| FP110-0025-0008 | 25 | 8 | 1,00 | 48 | A | - | 5 | 5900855045735 |
| FP110-0032-0015 | 32 | 8 | 0,25 | 100 | A | - | 5 | 5900855049511 |
| FP110-0032-0011 | 32 | 8 | 0,50 | 64 | A | - | 5 | 5900855043984 |
| FP110-0032-0019 | 32 | 8 | 0,60 | 64 | A | - | 5 | 5900855093781 |
| FP110-0032-0009 | 32 | 8 | 0,80 | 64 | A | - | 5 | 5900855008310 |
| FP110-0040-0002 | 40 | 10 | 0,30 | 100 | A | - | 5 | 5900855008358 |
| FP110-0040-0015 | 40 | 10 | 0,40 | 100 | A | - | 5 | 5900855044745 |
| FP110-0040-0012 | 40 | 10 | 1,00 | 64 | A | - | 5 | 5900855008457 |
| FP110-0050-0014 | 50 | 13 | 0,25 | 128 | A | - | 5 | 5900855093798 |
| FP110-0050-0008 | 50 | 13 | 0,30 | 128 | A | - | 5 | 5900855008549 |
| FP110-0050-0010 | 50 | 13 | 0,40 | 100 | A | - | 5 | 5900855008563 |
| FP110-0050-0005 | 50 | 13 | 0,50 | 100 | A | - | 5 | 5900855008518 |
| FP110-0050-0007 | 50 | 13 | 0,60 | 100 | A | - | 5 | 5900855008532 |
| FP110-0050-0002 | 50 | 13 | 0,80 | 80 | A | - | 5 | 5900855008488 |
| FP110-0050-0001 | 50 | 13 | 1,00 | 80 | A | - | 5 | 5900855008471 |
| FP110-0050-0006 | 50 | 13 | 2,00 | 64 | A | - | 2 | 5900855008525 |
| FP110-0063-0015 | 63 | 16 | 0,25 | 160 | A | - | 2 | 5900855008716 |
| FP110-0063-0023 | 63 | 16 | 0,30 | 128 | A | - | 2 | 5900855008792 |
| FP110-0063-0031 | 63 | 16 | 0,30 | 200 | A | - | 2 | 5900855093347 |
| FP110-0063-0003 | 63 | 16 | 0,50 | 128 | A | - | 2 | 5900855008594 |
| FP110-0063-0004 | 63 | 16 | 0,60 | 100 | A | - | 2 | 5900855008600 |
| FP110-0063-0005 | 63 | 16 | 0,80 | 100 | A | - | 2 | 5900855008617 |
| FP110-0063-0036 | 63 | 16 | 1,00 | 80 | A | - | 2 | 5900855098960 |
| FP110-0063-0006 | 63 | 16 | 1,00 | 100 | A | - | 2 | 5900855008624 |
| FP110-0063-0007 | 63 | 16 | 1,20 | 80 | A | - | 2 | 5900855008631 |
| FP110-0063-0032 | 63 | 16 | 1,20 | 100 | A | - | 2 | 5900855093354 |
| FP110-0063-0035 | 63 | 16 | 1,60 | 64 | A | - | 2 | 5900855096881 |
| FP110-0063-0008 | 63 | 16 | 1,60 | 80 | A | - | 2 | 5900855008648 |
| FP110-0063-0033 | 63 | 16 | 1,60 | 100 | A | - | 2 | 5900855093590 |
| FP110-0063-0009 | 63 | 16 | 2,00 | 80 | A | - | 2 | 5900855008655 |
| FP110-0063-0034 | 63 | 16 | 2,00 | 100 | A | - | 2 | 5900855093606 |
| FP110-0063-0011 | 63 | 16 | 3,00 | 64 | A | - | 2 | 5900855008679 |
| FP110-0080-0020 | 80 | 22 | 0,50 | 128 | A | - | 2 | 5900855008990 |
| FP110-0080-0017 | 80 | 22 | 0,60 | 128 | A | - | 2 | 5900855008969 |
| FP110-0080-0037 | 80 | 22 | 0,80 | 100 | A | 36 | 2 | 5900855093613 |
| FP110-0080-0022 | 80 | 22 | 0,80 | 128 | A | 36 | 2 | 5900855053532 |
| FP110-0080-0008 | 80 | 22 | 1,00 | 100 | A | 36 | 2 | 5900855008877 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... |

Index			$\frac{1}{4}$	$\sqrt[1]{2}_{\sqrt[3]{3}}$	Geometria		4	$\|\mid$
	mm	mm	mm			mm	szt.	
FP110-0080-0009	80	22	1,20	100	A	36	2	5900855008884
FP110-0080-0039	80	22	1,20	128	A	36	2	5900855093637
FP110-0080-0036	80	22	1,60	80	A	36	2	5900855093361
FP110-0080-0010	80	22	1,60	100	A	36	2	5900855008891
FP110-0080-0040	80	22	1,60	128	A	36	2	5900855093644
FP110-0080-0011	80	22	2,00	80	A	36	2	5900855008907
FP110-0080-0018	80	22	2,50	80	A	36	2	5900855008976
FP110-0080-0012	80	22	3,00	80	A	36	2	5900855008914
FP110-0100-0019	100	22	0,50	300	A	-	2	5900855009188
FP110-0100-0003	100	22	0,60	160	A	-	2	5900855009027
FP110-0100-0015	100	22	0,80	128	A	40	2	5900855009140
FP110-0100-0041	100	22	1,00	100	A	40	2	5900855093651
FP110-0100-0014	100	22	1,00	128	A	40	2	5900855009133
FP110-0100-0044	100	22	1,20	100	A	40	2	5900855099868
FP110-0100-0004	100	22	1,20	128	A	40	2	5900855009034
FP110-0100-0005	100	22	1,60	100	A	40	2	5900855009041
FP110-0100-0042	100	22	1,60	128	A	40	2	5900855093668
FP1 10-0100-0046	100	22	2,00	80	A	40	1	5900855101127
FP110-0100-0006	100	22	2,00	100	A	40	1	5900855009058
FP110-0100-0027	100	22	2,50	100	A	40	1	5900855052542
FP110-0100-0007	100	22	3,00	80	A	40	1	5900855009065
FP110-0125-0020	125	22	0,60	160	A	-	2	5900855052320
FP110-0125-0040	125	22	0,80	128	A	40	2	5900855098847
FP110-0125-0001	125	22	0,80	160	A	40	2	5900855009201
FP110-0125-0036	125	22	1,00	128	A	40	2	5900855093675
FP110-0125-0037	125	22	1,00	160	A	40	2	5900855093682
FP110-0125-0038	125	22	1,20	128	A	40	2	5900855093699
FP110-0125-0035	125	22	1,60	128	A	40	2	5900855093378
FP110-0125-0010	125	22	2,00	128	A	40	1	5900855009294
FP110-0125-0017	125	22	2,50	100	A	40	1	5900855048859
FP110-0125-0039	125	22	3,00	100	A	40	1	5900855093705
FP110-0160-0002	160	32	1,00	160	A	63	1	5900855009331
FP110-0160-0005	160	32	1,20	160	A	63	1	5900855009362
FP110-0160-0017	160	32	1,60	128	A	63	1	5900855093712
FP110-0160-0011	160	32	1,60	160	A	63	1	5900855050357
FP110-0160-0009	160	32	2,00	128	A	63	1	5900855044813
FP110-0160-0010	160	32	2,50	128	A	63	1	5900855044820
FP110-0160-0007	160	32	3,00	128	A	63	1	5900855009386
FP110-0200-0001	200	32	1,00	200	A	63	1	5900855009409
FP110-0200-0003	200	32	1,60	160	A	63	1	5900855009423
FP110-0200-0004	200	32	2,00	160	A	63	1	5900855009430
FP110-0200-0006	200	32	2,50	160	A	63	1	5900855009454
FP110-0200-0007	200	32	3,00	128	A	63	1	5900855009461
FP110-0250-0001	250	32	2,00	200	A	63	1	5900855009478
FP110-0250-0008	250	32	2,50	160	A	63	1	5900855093804
FP110-0250-0002	250	32	3,00	160	A	63	1	5900855009485
FP110-0315-0002	315	40	2,50	200	A	80	1	5900855093811
FP120-0063-0003	63	16	4,00	64	Aw	-	1	5900855093828
FP120-0080-0003	80	22	4,00	64	Aw	36	1	5900855093835
FP120-0080-0004	80	22	5,00	64	Aw	36	1	5900855093842
FP120-0080-0005	80	22	6,00	64	Aw	36	1	5900855096942
FP120-0100-0001	100	22	4,00	80	Aw	40	1	5900855093859
FP120-0100-0004	100	22	4,00	100	Aw	40	1	5900855093385
FP120-0100-0002	100	22	5,00	80	Aw	40	1	5900855093866
FP120-0125-0001	125	22	4,00	100	Aw	40	1	5900855093880
FP120-0125-0002	125	22	5,00	80	Aw	40	1	5900855093897
FP120-0125-0003	125	22	6,00	80	Aw	40	1	5900855093903
FP120-0160-0001	160	32	4,00	100	Aw	63	1	5900855093910
FP120-0160-0002	160	32	5,00	100	AW	63	1	5900855093927
FP120-0160-0003	160	32	6,00	100	Aw	63	1	5900855093934
FP120-0200-0001	200	32	4,00	128	Aw	63	1	5900855093941

-
D/N

G

CECHY / KORZYŚCI:

- wykonywane z wysokiej jakości stali szybkotnącej HSS-DMo5 (SW7M) na podstawie norm DIN 1838, DIN 1840 oraz AS i BS
- produkcja narzędzi w oparciu o najnowocześniejsze metody i technologie, począwszy od obróbki cieplnej, nacinania uzębienia, obróbki szlifierskiej na obróbce cieplno-chemicznej kończąc
- wszystkie standardowe frezy tarczowo-piłkowe posiadają określone w danych średnicach zbieżności powierzchni bocznych, co zapobiega zacieraniu się narzedzia w procesie ciecia
możliwość zamówienia frezów o innych parametrach grubości, średnicy otworu oraz ilości i geometrii uzębienia, co pozwala na precyzyjne zaspokojenie potrzeb i oczekiwań klienta
w celu zwiększenia żywotności istnieje możliwość pokrywania narzędzia powtokami
uszlachetniającymi, np. PVD
- w przypadku pracy w zespole, prosimy o podanie ilości frezów mocowanych na wrzecionie narzędzia zostaną wykonane na zamówienie specjalne z zachowaniem jednakowej średnicy ZASTOSOWANIE:
- odmianę uzębienia B z łukowym grzbietem zęba stosuje się do obróbki materiatów o gorszej skrawalności w przypadku różnic obciążenia i siły skrawania
- uzębienie B stosuje się do cięcia materiałów miękkich i ciągliwych
- uzębienie B stosuje się do większych głębokości cięcia oraz do obróbki elementów petnych i grubościennych
- odmiany uzębienia B i Bw stosuje się również do nacinania rowków o większej głębokośc
- kąt natarcia zębów zależy od rodzaju/gatunku przecinanego materiału

| Index | | | $\frac{1}{4}$ | $\sqrt{1}_{\sqrt[2]{3}}$ | Geometria | | 4 | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | | | mm | szt. | |
| FP130-0063-0016 | 63 | 16 | 1,00 | 24 | B | - | 2 | 5900855093392 |
| FP130-0063-0004 | 63 | 16 | 1,00 | 48 | B | - | 2 | 5900855009621 |
| FP130-0063-0017 | 63 | 16 | 1,20 | 48 | B | - | 2 | 5900855093408 |
| FP130-0080-0008 | 80 | 22 | 1,00 | 48 | B | 36 | 2 | 5900855009782 |
| FP130-0080-0025 | 80 | 22 | 1,00 | 64 | B | 36 | 2 | 5900855093415 |
| FP130-0080-0026 | 80 | 22 | 1,20 | 48 | B | 36 | 2 | 5900855093422 |
| FP130-0080-0028 | 80 | 22 | 1,60 | 48 | B | 36 | 2 | 5900855093446 |
| FP130-0100-0002 | 100 | 22 | 1,00 | 64 | B | 40 | 2 | 5900855009843 |
| FP130-0100-0013 | 100 | 22 | 1,20 | 64 | B | 40 | 2 | 5900855053556 |
| FP130-0100-0003 | 100 | 22 | 1,60 | 48 | B | 40 | 2 | 5900855009850 |
| FP130-0100-0024 | 100 | 22 | 1,60 | 64 | B | 40 | 2 | 5900855099875 |
| FP130-0100-0023 | 100 | 22 | 2,00 | 48 | B | 40 | 1 | 5900855093453 |
| FP130-0100-0008 | 100 | 22 | 2,00 | 64 | B | 40 | 1 | 5900855009904 |
| FP130-0100-0018 | 100 | 22 | 2,50 | 48 | B | 40 | 1 | 5900855097956 |
| FP130-0100-0014 | 100 | 22 | 3,00 | 40 | B | 40 | 1 | 5900855053563 |
| FP130-0125-0026 | 125 | 22 | 1,00 | 64 | B | 40 | 2 | 5900855100984 |
| FP130-0125-0002 | 125 | 22 | 1,00 | 80 | B | 40 | 2 | 5900855009935 |
| FP130-0125-0003 | 125 | 22 | 1,20 | 64 | B | 40 | 2 | 5900855009942 |
| FP130-0125-0030 | 125 | 22 | 1,60 | 64 | B | 50 | 2 | 5900855093460 |
| FP130-0125-0025 | 125 | 22 | 2,00 | 64 | B | 40 | 1 | 5900855093477 |
| FP130-0125-0004 | 125 | 22 | 3,00 | 48 | B | 40 | 1 | 5900855009959 |
| FP130-0160-0003 | 160 | 32 | 2,00 | 64 | B | 63 | 1 | 5900855010030 |
| FP130-0160-0004 | 160 | 32 | 2,50 | 64 | B | 63 | 1 | 5900855010047 |
| FP130-0160-0007 | 160 | 32 | 3,00 | 64 | B | 63 | 1 | 5900855010078 |
| FP130-0200-0002 | 200 | 32 | 2,00 | 80 | B | 63 | 1 | 5900855010108 |
| FP130-0200-0003 | 200 | 32 | 3,00 | 64 | B | 63 | 1 | 5900855010115 |
| FP140-0100-0001 | 100 | 22 | 4,00 | 40 | Bw | 40 | 1 | 5900855096898 |
| FP140-0125-0002 | 125 | 22 | 4,00 | 48 | Bw | 40 | 1 | 5900855093972 |
| FP140-0125-0003 | 125 | 22 | 5,00 | 40 | Bw | 40 | 1 | 5900855098175 |
| FP140-0160-0003 | 160 | 32 | 4,00 | 48 | Bw | 63 | 1 | 5900855093989 |
| FP140-0160-0002 | 160 | 32 | 6,00 | 48 | Bw | 63 | 1 | 5900855098182 |
| FP140-0250-0001 | 250 | 32 | 4,00 | 80 | Bw | 63 | 1 | 5900855098212 |

do cięcia metali

VHM	DIN		用乿	(10)
NEW	$\operatorname{DIN}_{1838}$	$\frac{1^{\circ}}{\mathbf{n}^{6}}$		

CECHY / KORZYŚCI:

- wykonywane z odpowiednio dobranego gatunku węglika spiekanego
- produkcja narzędzi w oparciu o najnowocześniejsze metody i technologie nacinania uzębienia, obróbki szlifierskiej na obróbce cieplno-chemicznej kończąc
- wszystkie standardowe frezy tarczowo-piłkowe posiadają określone w danych średnicach zbieżności powierzchni bocznych, co zapobiega zacieraniu się narzędzia w procesie cięcia
- możliwość zamówienia frezów o innych parametrach grubości. średnicy otworu oraz ilości ozemetrii uzebienia co pozwala na precyzyine zaspokoienie potrzeb ioczekiwań klient
i celu dodatkowo zwieksonia żyotnosci istnieje moz̀lwó pokryania nań klie powłokami uszlachetniającymi, np. PVD
- w przypadku pracy w zespole, prosimy o podanie ilości frezów mocowanych na wrzecionie narzędzia zostaną wykonane na zamówienie specjalne z zachowaniem jednakowej średnicy

ZASTOSOWANIE

- węglik spiekany charakteryzuje się wielokrotnie większą twardością od stali szybkotnących frezy VHM z powodzeniem moga obrabiać stale o twardościach powyżej 50HRc stale kwasoodporne oraz żarowytrzymate, stopy tytanu itp
- w przypadku zastosowania frezów VHM do obróbki stali niskostopowych można zastosować 2-3 krotnie większe szybkości skrawania od frezów HSS.
- uzębienie trójkątne w odmianie A stosuje się do obróbki elementów cienkościennych małych głębokosci cięcia
- uzębienie B stosuje się do większych głębokości cięcia oraz do obróbki elementów petnych i grubościennych
- ponieważ frezy VHM są bardzo twarde i kruche wskazane jest używanie ich na obrabiarkach zapewniających stabilne warunki pracy oraz właściwe, sztywne zamocowanie
przedmiotu obrabianego
- kąt natarcia zębów zależy od rodzaju/gatunku przecinanego materiału

	Index				$\sqrt{n}^{2} \sim^{3}$	Geometria		4	$\|\mid$
		mm	mm	mm			mm	szt.	
0	FP910-0063-0001	63	16	2,0	48	A	-	1	5900855241496
0	FP910-0080-0003	80	22	0,8	64	A	-	1	5900855240505
0	FP910-0100-0003	100	22	0,6	80	A	-	1	5900855240802
0	FP930-0080-0001	80	22	1,0	48	B	36,00	1	5900855242240
0	FP930-0080-0002	80	22	1,2	48	B	36,00	1	5900855242257
\bigcirc	FP930-0080-0003	80	22	1,6	48	B	36,00	1	5900855242264

Podziałkę uzębienia, orientacyjne prędkości skrawania dla frezów tarczowo-piłkowych do przecinarek oraz przybliżone wartości posuwów obrazuja niżej wymienione tabele.

Podziałka uzębienia:

Parametry geometrii uzębienia dla rodzajów materiałów:

Rodzaj ciętego materiału		
Stal nierdzewne	10°	6°
Stal $1000 \mathrm{~N} / \mathrm{mm}^{2}$	10°	6°
Stal $750 \mathrm{~N} / \mathrm{mm}^{2}$	15°	6°
Stal $500 \mathrm{~N} / \mathrm{mm}^{2}$	18°	8°
Żeliwo	10°	6°
Miedź, brąz	20°	8°
Mosiądz	8°	6°
Aluminium, stopy lekkie	25°	10°

Obroty wrzeciona (obr/min):

Rodzaj ciętego materiału	Średnica freza								
	ø200	ø225	ø250	¢275	ø300	ø315	ø350	ø370	¢400
Stal nierdzewne	$15 \div 35$	$15 \div 30$	$15 \div 25$	$10 \div 25$	$10 \div 20$	$10 \div 20$	$10 \div 20$	$10 \div 20$	$5 \div 15$
Stal $1000 \mathrm{~N} / \mathrm{mm}^{2}$	$25 \div 40$	$20 \div 35$	$20 \div 30$	$15 \div 30$	$15 \div 25$	$15 \div 25$	$15 \div 25$	$15 \div 25$	$10 \div 20$
Stal $750 \mathrm{~N} / \mathrm{mm}^{2}$	$30 \div 65$	$30 \div 60$	$25 \div 50$	$25 \div 45$	$20 \div 45$	$20 \div 40$	$20 \div 35$	$20 \div 35$	$15 \div 30$
Stal $500 \mathrm{~N} / \mathrm{mm}^{2}$	$45 \div 80$	$45 \div 70$	$40 \div 65$	$35 \div 60$	$30 \div 55$	$30 \div 50$	$25 \div 45$	$25 \div 45$	$20 \div 40$
Żeliwo	$45 \div 80$	$45 \div 70$	$40 \div 65$	$35 \div 60$	$30 \div 55$	$30 \div 50$	$25 \div 45$	$25 \div 45$	$20 \div 40$
Miedź, brąz	$320 \div 480$	$300 \div 430$	$250 \div 380$	$230 \div 350$	$210 \div 320$	$200 \div 300$	$180 \div 270$	$170 \div 260$	$160 \div 240$
Mosiądz	$680 \div 950$	$550 \div 850$	$500 \div 770$	$450 \div 700$	$430 \div 640$	$400 \div 600$	$350 \div 550$	$350 \div 520$	$300 \div 480$
Aluminium, stopy lekkie	$950 \div 1500$	$850 \div 1250$	$750 \div 1100$	$700 \div 1050$	$650 \div 950$	$600 \div 900$	$550 \div 820$	$520 \div 770$	$470 \div 720$

Posuw ($\mathrm{mm} / \mathrm{min}$) dla podziałek uzębienia i rodzajów materiałów:

Rodzaj ciętego materiału	Podziałka							
	3	4	5	6	8	10	12	14
Stal nierdzewne	$70 \div 150$	$60 \div 130$	$55 \div 110$	$50 \div 90$	$40 \div 75$	$35 \div 60$	$30 \div 55$	-
Stal $1000 \mathrm{~N} / \mathrm{mm}^{2}$	$90 \div 160$	$80 \div 140$	$70 \div 130$	$60 \div 120$	$45 \div 90$	$40 \div 80$	$35 \div 65$	-
Stal $750 \mathrm{~N} / \mathrm{mm}^{2}$	$250 \div 350$	$200 \div 300$	$150 \div 250$	$100 \div 180$	$80 \div 130$	$70 \div 100$	$65 \div 90$	$60 \div 80$
Stal $500 \mathrm{~N} / \mathrm{mm}^{2}$	$250 \div 350$	$200 \div 300$	$150 \div 250$	$100 \div 180$	$80 \div 130$	$70 \div 100$	$65 \div 90$	$60 \div 80$
Żeliwo	$250 \div 350$	$280 \div 440$	$210 \div 350$	$180 \div 300$	$140 \div 220$	$120 \div 180$	$90 \div 150$	$75 \div 125$
Miedź, brąz	$1400 \div 2000$				$1000 \div 1600$	$700 \div 1200$	$550 \div 700$	$500 \div 700$
Mosiądz	$2000 \div 4000$				$1500 \div 3200$	$1000 \div 2500$	$800 \div 1800$	$700 \div 1400$
Aluminium, stopy lekkie	$4500 \div 8500$					$3800 \div 6000$	$3000 \div 5000$	$2800 \div 4600$

Parametry piły i typ maszyny:

Typ maszyny	Średnice zewnętrzne (mm)	Średnice otworów (mm)	Typ iśrednice otworów zabierakowych (mm)
ADIGE SALA	200-250	32	4/9/50
	275-315	32	2/11/63
	350	40	4/12/64
	400-425	50	4/15/80
BAIER	175-250	32	-
BEWO	200-300	32	2/8/45+2/11/63
	315-350	40	2/8/55+4/12/63
BIMAX	100-300	32	2/8/45
BONAK	250-350	40	2/8/55+4/12/64
BROBO WALDON	250	32	2/8/45+2/11/63
	300	38	2/9/55
	300-400	40	2/8/55+4/12/64
	500	40	2/8/55+4/12/64+2/12/80
CONNI	400-425	40	4/11/63
	400-425	50	4/15/80
DALLY	250-500	40	2/8/55+4/12/64+2/12/80
DEMURGER	160-300	25,4	-
	200-250	32	2/8/45+2/11/63
	225-350	40	2/8/55+4/12/64
DONG JIN	300-370	40	2/8/55+4/12/64
DORINGER	315-350	40	2/12/64
EISELE	210-225	40	2/8/55
	250-350	40	2/8/55+4/12/64
	370-450	40	2/12/64+2/15/80
	500	40	2/12/80+2/15/100
EUBAMA	130-160	32	1/9/50+1/9/60
EXACTCUT	250	32	4/9/50
FABRIS	225-350	32	2/8/45+2/11/63
FEMI	225-350	32	2/8/45+2/11/63
FONG-HO	250-275	32	2/8/45+2/9/50+2/11/63
	300-400	32	4/11/63
	360	40	2/11/63+3/11/65
GERNETTI	250-350	40	4/11/63
	350	50	4/15/80
	500	50	4/18/100
HAEBERLE	225	32	2/8/45
	225-275	40	2/8/55
	300-450	40	2/8/55+4/12/64
IBP PEDRAZZOLI	200-350	32	2/8/45+2/11/63
	425	50	4/15/80
IMET	425	50	4/15/80
	250-370	32	2/8/45+2/11/63
KALTENBACH	315-350	40	2/8/55+4/12/64
	225-250	32	-
KASTO	350-400	50	4/15/80
	250-315	32	4/9/50
KENTAI	350-425	50	4/15/80

Typ maszyny	Średnice zewnętrzne (mm)	Średnice otworów (mm)	Typ i średnice otworów zabierakowych (mm)
KOSOKU	250	32	2/9/50+2/8/45
	275-380	45	4/11/66
MAC	300	32	2/9/50
	370-450	40	4/11/63
MACC	225-350	32	2/8/45+2/11/63
	350-450	40	2/8/55+4/12/64
MACO	350-425	50	4/15/80
MAIR	300-350	32	2/8/45+2/11/63
	300-350	40	2/8/55+4/12/64
MEP	225-350	32	2/8/45+2/11/63
METORA	250-350	32	2/11/80
MBM MERCURY	300-350	32	-
MTM	300	32	2/8/45
	400	40	4/12/64
	400	50	4/15/80
	450-550	90	$3 / 13 / 160$
	550	80	3/13/160
OMES	250-300	32	2/8/45+2/11/63
OMP	250-370	32	2/8/45+2/11/63
	400-525	50	4/15/80
OTO MILLS	500	50	4/15/80
	550	140	4/20/170
PFIFFNER / HYDROMAT	160-250	32	1/9/50+1/9/60
	160-250	40	2/8/55
RATTUNDE	400	50	4/15/80
RAYGOR	225-350	32	2/8/45+2/11/63
	300	38	2/9/55
	250-370	40	2/8/55+4/12/64
RGA	225-275	25,4	-
	250-370	40	2/8/55+4/12/64
ROBEJO	250-350	32	2/8/45+2/11/63
ROHBI	175-300	32	2/8/45+2/11/63
RSA	315	40	4/13/63
RURACK OTTO	225	32	2/8/45+2/11/63
	250-315	32	2/8/45+4/9/50+2/12/84
	370	40	4/12/64+2/15/80
	300-350	40	2/8/55+4/12/64
SCOTCHMAN INDUSTRIES	250-300	32	2/8/45+2/11/63
	275-400	40	2/8/55+4/12/64
SIMEC	200-350	32	2/8/45+4/11/63
SINICO	350	32	2/8/45+2/11/63
SOCO	250-350	32	2/11/63
STARTRITE	250-315	32	2/9/56+2/12/64+2/11/80
STAYER	225-350	32	-
THOMAS	225-350	32	2/8/45+2/11/63
	315-350	32	2/11/63+2/12/75
TOMET	200-350	32	2/8/45+2/11/63
TRENNJAEGER	250	32	2/9/50
	250-315	40	4/11/63
	315-450	50	4/14/85
TSUNE	250-275	32	2/8/45+2/11/63
	420	50	4/15/80
ULMIA	160-300	32	-
	250-400	40	4/11/63
VAI SEUTHE	560	80	4/23/120
VIEMME	250-350	32	2/8/45+2/11/63
VOUCHER	275	35	2/13,5/57,2
WAGNER	200-315	32	4/9/50
	350	50	4/14/80
WAHLEN	250-400	40	2/8/55+2/11/63
WEIDMANN	210-275	32	2/8/45+2/11/63
WINTER	250-315	40	2/8/55+4/12/64
WUNSCH	210-250	32	2/8/45
	210-400	40	2/8/55+4/12/64

CECHY / KORZYSCl:

- wszystkie standardowo produkowane frezy do przecinarek wykonywane sa ze stali szybkotnącej HSS-DMo5 (SW7M)
- charakterystycznym elementem konstrukcyjnym są otwory zabierakowe o średnicach, losciach i rozstawie zaleznym od stosowanej przecinark
- w przypadku konieczności zwiększenia żywotności frezów, obniżenia współczynnika tarcia, zastosowaniu frezów do materiałów trudnoskrawalnych oraz zwiększeniu parametrów obróbki, istnieje możliwość zastosowania pasywacji lub pokrywania frezów powłokami. TiN, TiCN, TiAl N
- na specjalne zamówienie możliwe jest wykonanie frezów ze stali o 5% zawartości kobaltu, które dedykowane są do cięcia stali nierdzewnych i kwasoodpornych
- geometria uzębienia Bw - zęby tukowe z naprzemiennymi skosami
- istnieje możliwość wykonania frezów do przecinarek o innych parametrach - maks. średnicy zewnętrznej fi 600 mm , grubości oraz rozstawu otworów zabierakowych

ZASTOSOWANIE:

- uzębienie Bw jest uzębieniem uniwersalnym stosowanym do przecinania materiatów pełnych i ksztattowników
- wielkość podziałki uzębienia frezów uzależniona jest od grubości przecinanego materiału a kąt natarcia zębów od rodzaju ciętego materiału
- w celu przedłużenia żywotności skrawających krawędzi uzębienia, niezbędnym jest stosowanie cieczy chłodzaco-smarujących
- do przecinania elementów: stalowych [stal węglowa i stopowa], żeliwnych [żeliwo szare, ciągliwe i stopowe], staliwnych, aluminiowych, mosięznych, brązów i miedzi rekomendujemy zastosować ogólnodostępne chłodziwa takie jak: Ekobiocol AK lub Ekobiocol Special zaleca się wodny roztwór tych środków o stężeniu 3-10\%
- frezy do przecinarek stosowane są na wolnoobrotowych frezarkach / przecinarkach w/w narzedzia nie są przystosowane do używania na obrabiarkach do drewna
- możliwość wykonania na zamówienie frezów o geometrii ostrza typu C (FP230) - do przecinania przekrojów petnych lub typu Bf (FP240) - do przecinania cienkościennych ksztattowników

Index				$\sqrt{2}^{\frac{3}{n}}$			Geometria	4	
	mm	mm	mm		mm	il $x d_{0} / d_{p}$		szt.	
FP220-0200-0001	200	32	2,00	200	80	Typ "F" $2 \times 8,5 / 45 \mathrm{i} 2 \times 11 / 63$	Bw $18{ }^{\circ}$	1	5900855010313
FP220-0225-0002	225	32	2,00	180	80	$\begin{gathered} \text { Typ "C" } 2 \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ i \\ i 2 \times 12 / 64 \end{gathered}$	$\mathrm{Bw} 18^{\circ}$	1	5900855010351
FP220-0225-0001	225	32	2,00	220	80	$\begin{aligned} \text { Typ "C" } 2 & \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ & 12 \times 12 / 64 \end{aligned}$	$\mathrm{Bw} 18^{\circ}$	1	5900855010344
FP220-0225-0006	225	32	2,00	220	64	Typ "REMS" $1 \times 8,5 / 45$ i $1 \times 10 / 45$ Kat 15 st.	$B w 18^{\circ}$	1	5900855010399
FP220-0250-0001	250	32	2,00	200	80	$\begin{aligned} \text { Typ "C" } 2 & \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ & 2 \times 12 / 64 \end{aligned}$	$\mathrm{Bw} 18^{\circ}$	1	5900855010405
FP220-0250-0002	250	32	2,50	200	80	$\begin{gathered} \text { Typ "C" } 2 \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ i \\ i 2 \times 12 / 64 \end{gathered}$	$B w 18^{\circ}$	1	5900855010412
FP220-0250-0011	250	40	2,00	200	80	Typ "H" $2 \times 8,5 / 55 \mathrm{i} 4 \times 12 / 64$	Bw 18°	1	5900855010504
FP220-0275-0001	275	32	2,00	220	100	$\begin{gathered} \text { Typ "C" } 2 \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ \text { i } 2 \times 12 / 64 \end{gathered}$	$B \mathrm{~F} 18^{\circ}$	1	5900855010566
FP220-0275-0007	275	32	2,50	220	100	$\begin{gathered} \text { Typ "C" } 2 \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ \text { i } 2 \times 12 / 64 \end{gathered}$	$B w 18^{\circ}$	1	5900855010627
FP220-0275-0005	275	40	2,50	200	100	Typ "H" $2 \times 8,5 / 55$ i $4 \times 12 / 64$	Bw $18{ }^{\circ}$	1	5900855010603
FP220-0300-0007	300	32	2,50	180	100	$\begin{aligned} & \text { Typ "C" } 2 \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ & 12 \times 12 / 64 \end{aligned}$	Bw 18°	1	5900855052955
FP220-0315-0001	315	32	2,50	220	100	$\begin{aligned} \text { Typ "C" } & 2 \times 8,5 / 45 ; 2 \times 9,5 / 50 \\ & 12 \times 12 / 64 \end{aligned}$	Bw 18°	1	5900855010825
FP220-0315-0002	315	40	3,00	200	100	Typ "U" $4 \times 10,5 / 63$	Bw $18{ }^{\circ}$	1	5900855010832

[^2]na zamówienie

CECHY / KORZYŚCl:

- wszystkie standardowo produkowane frezy do przecinarek wykonywane są ze stali szybkotnącej HSS-DMo5 (SW7M)
- charakterystycznym elementem konstrukcyjnym są otwory zabierakowe o średnicach, ilościach i rozstawie zależnym od stosowanej przecinarki
- w przypadku konieczności zwiększenia żywotności frezów, obniżenia współczynnika tarcia, zastosowaniu frezów do materiałów trudnoskrawalnych oraz zwiększeniu parametrów obróbki, istnieje możliwość zastosowania pasywacji lub pokrywania frezów powłokami: TiN, TiCN, TiALN
- na specjalne zamówienie możliwe jest wykonanie frezów ze stali o 5% zawartości kobaltu posiadajacych znacznie wyższą żywotność
- istnieje możliwość wykonania frezów do przecinarek o innych parametrach - maks. średnicy zewnętrznej fi 600 mm , grubości oraz rozstawie otworów zabierakowych

ZASTOSOWANIE:

- wielkość podziałki uzębienia frezów uzależniona jest od grubości przecinanego materiału a kąt natarcia zębów od rodzaju ciętego materiału
- w celu przedłużenia żywotności skrawających krawędzi uzębienia, niezbędnym jest stosowanie cieczy chłodząco-smarujących
- do przecinania elementów: stalowych [stal węglowa i stopowa], żeliwnych [żeliwo szare, ciągliwe i stopowe], staliwnych, aluminiowych, mosiężnych, brązów i miedzi rekomendujemy zastosować ogólnodostępne chłodziwa takie jak: Ekobiocol AK lub Ekobiocol Special - zaleca się wodny roztwór tych środków o stężeniu 3-10\%
- frezy do przecinarek stosowane są na wolnoobrotowych frezarkach / przecinarkach - w/w narzędzia nie są przystosowane do używania na obrabiarkach do drewna!
- możliwość wykonania na zamówienie frezów o geometrii ostrza typu: Bw - uzębienie uniwersalne stosowane do przecinania materiatów petnych oraz ksztattowników (FP222 z HSS, FP225 z HSS-E), C - do przecinania przekrojów petnych (FP232 z HSS, FP235 z HSS-E) lub typu Bf - do przecinania cienkościennych ksztattowników (FP242 z HSS, FP245 z HSS-E)

	PODGRUPA			$\frac{1}{4}$		Materiał		$丂^{1} \sim^{3} \ldots$
		mm	mm	mm	il $\times \mathrm{d}_{0} / \mathrm{d}_{\text {p }}$			
0	FP2..	225	32	2,0	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
0	FP2..	250	32	2,0	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	HSS-E	Uzębianie na zamówienie
\bigcirc	FP2..	250	32	2,5	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
0	FP2..	275	32	2,0	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
0	FP2..	275	32	2,5	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
\bigcirc	FP2..	275	40	2,5	Typ "H" 2x8,5/55 i 4x12/64	HSS	HSS-E	Uzębianie na zamówienie
0	FP2..	315	32	2,5	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	HSS-E	Uzębianie na zamówienie
0	FP2..	315	40	2,5	Typ "H" 2x8,5/55 i 4x12/64	HSS	-	Uzębianie na zamówienie
\bigcirc	FP2..	350	32	2,5	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	HSS-E	Uzębianie na zamówienie
0	FP2..	350	40	2,5	Typ "H" 2x8,5/55 i $4 \times 12 / 64$	HSS	HSS-E	Uzębianie na zamówienie
\bigcirc	FP2..	350	32	3,0	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
0	FP2..	350	40	3,0	Typ "H" $2 \times 8,5 / 55$ i $4 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
\bigcirc	FP2..	370	32	3,0	Typ "C" $2 \times 8,5 / 45 ; 2 \times 9,5 / 50$ i $2 \times 12 / 64$	HSS	-	Uzębianie na zamówienie
0	FP2..	400	40	3,0	Typ "H" 2x8,5/55 i $4 \times 12 / 64$	HSS	HSS-E	Uzębianie na zamówienie
0	FP2..	400	50	3,0	Typ "S" $4 \times 15 / 80$ i $4 \times 14 / 85$	HSS	HSS-E	Uzębianie na zamówienie
0	FP2..	450	40	3,0	Typ "H" 2x8,5/55 i 4x12/64	HSS	-	Uzębianie na zamówienie
\bigcirc	FP2..	450	50	3,0	Typ "S" $4 \times 15 / 80$ i $4 \times 14 / 85$	HSS	-	Uzębianie na zamówienie

Legenda: il - ilość otworów zabierakowych, d_{0} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów, O-na zamówienie.
INFO: * jeśli potrzebujesz innych typowymiarów frezów do przecinarek - wyślij do nas zapytanie, * na zamówienie wykonujemy również frezy pokrywane powłokami PVD (TiN, TiCN, TiAIN).
na zamówienie

W celu zwiększenia żywotności można zastosować na frezach powłoki PVD.
Do najważniejszych zalet narzędzi powlekanych możemy zaliczyć:

- większą mikrotwardość na powierzchni (zwiększenie żywotności)
- mniejszy wspótczynnik tarcia o stal (mniejsze opory skrawania, eliminacja zjawiska naklejania się obrabianego materiału na boczne powierzchnie freza)
- możliwość obrabiania materiałów trudnoobrabialnych oraz stosowania większych parametrów obróbki

Powłoka: PASYWACJA (VAPO)

Mikrotwardość - 900 HV

Wspótczynnika tarcia-0,6
Kolor - czarny
Zastosowanie - stal < $500 \mathrm{~N} / \mathrm{mm} 2$, metale kolorowe

Powłoka: TiN - azotek tytanu
Mikrotwardość - 2300 HV
Wspótczynnika tarcia - 0,4
Kolor - złoty
Zastosowanie - stal < $500 \mathrm{~N} / \mathrm{mm} 2$

Powłoka: TiCN - węgloazotek tytanu

Mikrotwardość - 3000 HV
Wspótczynnika tarcia - 0,4
Kolor - graftowo-niebieski
Zastosowanie - stal < $750 \mathrm{~N} / \mathrm{mm} 2$, metale kolorowe

Powłoka: TiAIN - glino azotek tytanu

Mikrotwardość - 3300 HV
Współczynnika tarcia - 0,3
Kolor - fioletowo-szary
Zastosowanie - stal < $1000 \mathrm{~N} / \mathrm{mm} 2$, żeliwo , metale kolorowe
Szczególnie polecana przy zastosowaniu chłodziw olejowych

Pełne przekroje:

Wymiar przekroju ciętego materiału (mm)														
Średnica pity	10	20	30	40	50	60	70	80	90	100	110	120	130	140
Ilości zębów														
250	80	80	72	72	60	60								
280	90	80	80	80	80	60	60							
315		80	80	80	80	80	60	60						
360		100	100	100	80	80	80	60	60	60				
400			80	80	80	80	80	72	72	60	60			
425			100	100	100	80	80	80	60	50	50	50	50	
450			100	100	80	80	60	60	60	60	60	40	40	40

Profile, rury:

Średnica piły	Grubość ścianki (mm)	Ilość Zębów		
250	$3 \div 6$	80		
280	$3 \div 8$	90		
315	$3 \div 8$	100		
360	$4 \div 10$	120		
400	$4 \div 10$	120		
450	$4 \div 10$	150		
Grupa materiałowa			Prędkość skrawania ($\mathrm{m} / \mathrm{min}$)	Posuw na zạb ($\mathrm{mm} / \mathrm{zaq}$)
	St3, St4, 10, 15, St37, St42		130-150	0,06-0,07
Stale konstrukcy	St5, St6, 25, 40, 45G, St52,		100-120	0,06-0,07
	20H, 20HG, C10, C15		130-150	0,06-0,07
Stale do nawę	$17 \mathrm{HNM}, 16 \mathrm{MnCr} \mathrm{5}$,		100-120	0,06-0,07
Stale do azotowania	$25 \mathrm{H} 3 \mathrm{M}, 38 \mathrm{HMJ}, 34 \mathrm{CrAlNi}$		90-100	0,06-0,07
Stale automatowe	A10X, 9 S 20, 9 SMn 28		130-150	0,06-0,07
Stale do ulepszania	$30 \mathrm{H}, 40 \mathrm{H}, \mathrm{C} 35, \mathrm{C} 45$		100-120	0,06-0,07
do ulepsza	$30 \mathrm{HGS}, 40 \mathrm{HM}, 35 \mathrm{HGS}, 65$		90-100	0,05-0,06
Stale łożyskowe	$115 \mathrm{CrV} 3,100 \mathrm{Cr} 6$		70-90	0,05-0,06
Stale sprężynowe	$65 \mathrm{Si} 7,50 \mathrm{CrV} 4$		80-90	0,05-0,06
	NV, NMV, NC4, WCL, WNL,		70-90	0,05-0,06
位	NC10, NM, NZ3, NPW, WW	rVMo 12	60-80	0,04-0,05
Stale szybkotnące	SW7M, SK5M, SK8M		60-80	0,04-0,05
Stale nierdzewne	OH13, 3H13, 4H13, OH17T, H17,	CrNiMo Ti 17122, X20 Cr 13	50-70	0,04-0,05
Stale do kucia na zimno	$38 \mathrm{Cr} 2,37 \mathrm{Cr} 4$		80-100	0,04-0,05
Stale ulepszone cieplnie			60-80	0,04-0,05
Stale węglowe, stale stopowe wytrzymałość na rozciaganie do $800 \mathrm{~N} / \mathrm{mm} 2$	Cięcie cienkościennych kształtowników		200-300	0,03-0,05
Stale węglowe, stale stopowe wytrzymatość na rozciaganie $800-1400 \mathrm{~N} / \mathrm{mm} 2$	Cięcie cienkościennych kształtowników		100-200	0,03-0,05

Tabela obrotów:

Szybkość skrawania w m/min												
Średnica pity (mm)	60	70	80	90	100	120	140	160	180	200	250	300
obroty (obr/min) dla w/w szybkości skrawania i określonej średnicy pity												
250	76	89	102	115	127	153	178	204	229	255	318	382
280	67	78	89	101	112	134	156	179	201	223	279	335
300	64	74	85	96	106	127	149	170	191	212	265	318
315	61	71	81	91	101	121	142	162	182	202	253	303
360	53	62	71	80	88	106	124	142	159	177	221	265
400	48	56	64	72	80	96	111	127	143	159	199	239
425	45	52	60	67	75	90	105	120	135	150	187	225
450	42	50	57	64	71	85	99	113	127	142	177	212
560	34	40	45	51	57	68	80	90	102	114	142	170
630	30	35	30	45	51	61	71	81	91	101	126	152

Typ, model maszyny:

Typ maszyny	Typ obrabiarki	Średnica piły x średnica otworu	Wymiary otworów zabierakowych
ADIGE	CM502	280×40	$4 \times 11 / 63$
	CM601	360×40	$4 \times 11 / 63$
AMADA	CM65AN	280×40	$4 \times 11 / 80$
	CM75CNC	285×40	4×11/80
	CM100AN	360×40	4×11/90
	CM100CNC	360×40	4×11/90
	CM150AN	460×40	4×11/90
BEHRINGER	HCS70	250x40	$2 \times 12 / 65+2 \times 15 / 80$
	HCS90	285×40	$2 \times 12 / 65+2 \times 15 / 80$
	HCS130	315×40	$2 \times 12 / 65+2 \times 15 / 80$
	HCS150	360×40	$2 \times 12 / 65+2 \times 15 / 80$
BEWO	ECH108	250x40	$4 \times 12 / 64$
DAITO	P-65A	285×40	4×11/80
ENDO	HS-36,SS-36	360×50	$4 \times 16 / 80$
EVERISING	P-65A	250x32	$4 \times 9 / 50+4 \times 11 / 63$
		285x32	$4 \times 9 / 50+4 \times 11 / 63$
	P-100A	360x40	$4 \times 11 / 90$
	P-105A	460×50	4×11/90
AXACT-CUT	MAC 60	250x32	4×9/50
	0C-65	285x32	$4 \times 9 / 50+4 \times 11 / 80$
	OC-85	360x40	$4 \times 11 / 63$
KALTENBACH	KMR 100AP	360×50	$4 \times 16 / 80$
KASTO	WAC7	250x32	4×9/50
		285×32	4×9/50
	SPEED C9	250x32	4×9/50
		285×32	4×9/50
		315×32	4×9/50
	GRIPSPEED C10	360×40	4×11/90
	SPEED C14 / C15	360×50	$4 \times 16 / 80$
		425×50	$4 \times 16 / 80$
		460×50	$4 \times 16 / 80$
	VARIOSPEED C14 / C15	360×50	$4 \times 16 / 80$
		425×50	$4 \times 16 / 80$
		460×50	$4 \times 16 / 80$
MEGA	CS 65	280×32	$4 \times 12 / 63$
	CS 100	360×40	$4 \times 11 / 90$
	CS 150	460×50	4×11/90
MISSLER	CS4	360×40	4×11/90
NASHIJIMA	NHC-050NA	250x32	4×11/63
	NHC-070NA	285×32	$4 \times 11 / 63$
	NHC-100NA	360×50	$4 \times 16 / 80$
	NHC-150NA	460×50	4×21/90
NORITAKE	NCS-2/50	250x32	2x11/63
	NCS-2A/70	285×40	$2 \times 11 / 80$
	NCS-2A/100	360×40	$2 \times 11 / 80$
	NCS-2/150	460×50	4×11/90
PLANTOOL	QCS 15/210	250×40	4×12/64
		315×40	4×12/64
RATTUNDE	ACS90/2	360×50	$4 \times 16 / 80$
ROHBITECH	KTC-65CNC	250x32	$4 \times 11 / 63$
		285×32	$4 \times 11 / 63$
	KTC-85CNC	315×32	$4 \times 11 / 63$
RSA	RASA CUT SC	315×40	4×12/64
SINICO	TOP-2000	360×50	$4 \times 16 / 80$
TRENNJAEGER	SPA 75	280×32	$4 \times 11 / 63$
	SPA 100	360×40	4×11/90
	SPA 150	460×50	4×11/90
TSUNE	TK5C-50GL	250x32	$4 \times 11 / 63$
	TK5C-70GL	285×32	$4 \times 11 / 63$
	TK5C-100GL	360×50	$4 \times 16 / 80$
	TK5C-101GL	360x50	$4 \times 16 / 80$
WEBO	DB-70	250x40	$4 \times 11 / 63$
		315×40	4×11/63
INFORMACJE TECHNICZNE			
Narzędzia do cięcia - rowkowania			

CECHY / KORZYŚCl:

- ząb HM ze specjalnego gatunku węglika spiekanego, dedykowany do obróbki wszystkich gatunków stali i metali kolorowych
- specjalny ksztalt ptytki oraz geometria uzębienia pozwalają uzyskać wysoką wydajność cięcia
zastosowanie precyzyjnej technologii szlifowania dysku zapewnia stabilną pracę pity oraz eliminuje zjawisko drgań w trakcie skrawania
- dodatkowa powłoka PVD (TiAIN) pokrywająca powierzchnię uzębienia, zwiększa żywotność zmniejsza opory skrawania (do średnicy fi 630 mm)
- możliwość wykonania pił na zamówienie w zakresie średnic zewnętrznych: fi 250-710 mm ZASTOSOWANIE:
- cięcie profili o grubości ścianki powyżej 3 mm oraz materiałów pełnych wykonanych ze stali i metali kolorowych
- stosowane na wysokowydajnych, wolnoobrotowych, profesjonalnych przecinarkach wyposazonych w posuw automatyczny
- alternatywne rozwiązanie w stosunku do frezów tarczowych HSS
- charakteryzują się kilkakrotnie większą żywotnością oraz możliwością zastosowania większych parametrów pracy niż w przypadku frezów tarczowych HSS

Index	O		\pm		$)^{2} \sim^{3 \ldots}$	geometria			$\|\mid$																					
	mm	mm	mm	mm			-	szt.																						
- PS830-0250-...	250	32	2,1	1,8	80	GBH	0°	1	\|																					
- PS830-0280-....	280	32	2,1	1,8	80	GBH	0°	1	\|																					
- PS830-0280-....	280	32	2,1	1,8	100	GBH	0°	1	\|																					
- PS830-0280-....	280	40	2,1	1,8	80	GBH	0°	1	\|																					
PS830-0280-...	280	40	2,1	1,8	100	GBH	0°	1	\|																					
- PS830-0315-...	315	32	2,1	1,8	80	GBH	0°	1	\|																					
PS830-0315-...	315	32	2,1	1,8	100	GBH	0°	1	\|																					
PS830-0315-...	315	40	2,1	1,8	80	GBH	0°	1	\|																					
PS830-0315-...	315	40	2,1	1,8	100	GBH	0°	1	\|																					
PS830-0350-...	350	32	2,5	2,2	80	GBH	0°	1	\|																					
PS830-0350-....	350	32	2,5	2,2	100	GBH	0°	1	\|																					
- PS830-0350-...	350	32	2,5	2,2	120	GBH	0°	1	\|																					
PS830-0350-....	350	40	2,5	2,2	80	GBH	0°	1	\|																					
PS830-0350-....	350	40	2,5	2,2	100	GBH	0°	1	\|																					
PS830-0350-...	350	40	2,5	2,2	120	GBH	0°	1	\|																					
PS830-0400-....	400	50	2,8	2,5	80	GBH	0°	1	\|																					
PS830-0400-...	400	50	2,8	2,5	100	GBH	0°	1	\|																					
PS830-0400-...	400	50	2,8	2,5	120	GBH	0°	1	\|																					
PS830-0450-....	450	50	3,1	2,8	100	GBH	0°	1	\|																					
PS830-0450-...	450	50	3,1	2,8	120	GBH	0°	1	\|																					
PS830-0450-....	450	50	3,1	2,8	140	GBH	0°	1	\|																					
PS830-0450-....	450	50	3,1	2,8	160	GBH	0°	1	\|																					
PS830-0560-....	560	80	3,8	3,4	120	GBH	0°	1	\|																					
PS830-0560-...	560	80	3,8	3,4	140	GBH	0°	1	\|																					
PS830-0630-....	630	80	3,8	3,4	62	GBH	0°	1	\|																					

Legenda: \mathbf{O} - na zamówienie

Standardowe wymiary otworów mocujących i zabierakowych pił COOL CUT

- Jeżeli istnieje konieczność wykonania otworów zabierakowych o innych parametrach, prosimy o podanie: średnic otworów zabierakowych, ich ilości oraz średnicy podziałowej na której się znajduja.

Średnica wew. otworu	$\oplus \bigoplus \theta$
mm	$\mathrm{il} \times \mathrm{do} \times \mathrm{dp}$
32	$2 \times 8,5 / 45+4 \times 9 / 50+4 \times 11 / 63$
40	$2 \times 8,5 / 55+4 \times 12 / 64+4 \times 11 / 80$
50	$4 \times 15 / 80+4 \times 14 / 85$
80	$8 \times 24 / 120$

[^3]Minimalne obroty pił do cięcia tarciowego:

(O)	(O)	Minimalne obroty*
mm	mm	(obr/min)
200	115	8600
250	115	6900
300	150	5700
350	160	5000
400	180	4300
450	200	3800
500	250	3400
520	260	3300
550	270	3100
560	270	3100
580	300	3000
600	300	2900

* minimalne obroty podano przy szybkości liniowej cięcia $90 \mathrm{~m} / \mathrm{min}$

CECHY / KORZYŚCI:

- wykonane ze stali narzędziowej chromowo-wanadowe
- dzięki wtaściwemu procesowi obróbki cieplnej (hartowanie i odpuszczanie) piły charakteryzuja się optymalną twardością i strukturą materiałową
- specjalnie zaprojektowane uzębienie do szybkiego przecinania profli i blach stalowych
- specjalistyczna technologia szybkiego cięcia elementów stalowych

ZASTOSOWANIE:

- cięcie rur, prętów, blach i kształtowników w produkcji konstrukcji stalowych
- do specjalistycznego cięcia wyrobów stalowych, np. krat pomostowych
- piły można stosować wyłącznie na specjalistycznych, szybkoobrotowych przecinarkach
z szybkością obwodową (skrawania) $90 \div 120 \mathrm{~m} / \mathrm{s}$ bez konieczności chłodzenia

| Index | | | H | | | 4 | \|||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | | mm | szt. | |
| PM010-0500-0001 | 500 | 40 | 3,00 | 300 | 250 | 1 | 5900855024716 |
| PM010-0500-0002 | 500 | 40 | 4,00 | 300 | 250 | 1 | 5900855024723 |

PIŁY TAŚMOWE BIMETALOWE

Kształt i geometria uzębienia:

Rysunek	Opis
PC-S	Kształt uzębienia PC-S stosuje się przy cięciu cienkościennych rur i profli wykonanych z większości materiałów.
$P C-M$	Kształt uzębienia PC-M stosowany jest do cięcia średnich elementów - cięcie podatne na wibracje.
$P C-L$	Kształt uzębienia PC-L stosowany jest do cięcia dużych elementów - cięcie podatne na wibracje.
UNI-CUT	Uniwersalny kształt uzębienia UNI-CUT pozwala ciąć zróżnicowany materiał zarówno pod względem rodzaju jak i kształtu.

Dobór podziałki uzębienia do pit taśmowych Prof-Cut oraz Prof-Cut Plus:

Cięcie elementów pełnych

UWAGA:
W przypadku cięcia pełnych materiatów miękkich (tworzywo, aluminium) należy zastosować podziałkę o dwa stopnie większą od podanej w tabeli.

Tabela doboru pił taśmowych Uni-Cut:

Indeks	Wymiar taśmy	Wielkość podziałki	Wielkość materiału												
			1 mm	2 mm	3 mm	5 mm	$\begin{array}{r} 10 \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{gathered} 20 \\ \mathrm{~mm} \end{gathered}$	$\begin{array}{r} 30 \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} 50 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 150 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 200 \\ & \mathrm{~mm} \end{aligned}$
PX200-1306-0003	$13 \times 0,6$ UC-S	mała - dobra jakość cięcia	A	-	-	-	-	Δ							
PX200-1306-0002	$13 \times 0,6$ UC-M	średnia - długa żywotność		A	-	A	-	-	-						
PX200-1306-0001	13x0,6 UC-L	duża - większe parametry cięcia		-	-	-	-	A	A	-	-				
PX200-2009-0003	$20 \times 0,9$ UC-S	mała - dobra jakość cięcia		\triangle	\triangle	\triangle	-	-	\triangle	\triangle	-				
PX200-2009-0002	$20 \times 0,9$ UC-M	średnia - długa żywotność		A	-	A	-	-	-	A	-	-			
PX200-2009-0001	20x0,9 UC-L	duża - większe parametry cięcia			-	-	\triangle	-	\triangle	A	-	-	Δ		
PX200-2709-0003	$27 \times 0,9$ UC-S	mała - dobra jakość cięcia		\triangle	Δ	-	-	A	\triangle	-	-				
PX200-2709-0002	27x0,9 UC-M	średnia - długa żywotność			Δ	A	A	Δ	A	A	Δ	Δ	Δ		
PX200-2709-0001	27x0,9 UC-L	duża - większe parametry cięcia				-	-	A	-	\triangle	-	\triangle	-	Δ	
PX200-3411-0003	$34 \times 1,1$ UC-S	mała - dobra jakość cięcia		-	-	-	-	-	-	-	-	-			
PX200-3411-0002	34x1,1 UC-M	średnia - długa żywotność			A	\triangle	\triangle	\wedge	A		A	A	\triangle	\triangle	
PX200-3411-0001	$34 \times 1,1$ UC-L	duża - większe parametry cięcia				A	A	\wedge	\triangle	\triangle	\triangle	Δ	A	A	\triangle

Piły do zastosowań uniwersalnych. Aby prawidłowo zamówić taśmę UNI-CUT trzeba podać: długość pętli, jej grubość oraz jakie elementy będziesz przecinał małe (S), średnie (M) lub duże (L) - dobór wg tabeli.

Dobór prędkości taśmy i wydajności cięcia:

Lp.	Gatunki stali	Charakterystyka	Przykłady	Prędkość taśmy* [m/min]	Wydajność** [$\mathrm{cm}^{2} / \mathrm{min}$]
1	Stale niestopowe (np. węglowe konstrukcyjne, staliwa)	C<0,25\%	St3, St4, 10, 15, 20G, A10X, L400	80-95	55-76
2	Stale niestopowe (np. konstrukcyjne, automatowe, staliwa)	C=0,25-0,55\%	St5, Stb, 25, 40, 45G, 50G, A35, A45, L500, L600	65-70	47-65
3	Stale niestopowe (np. konstrukcyjne, automatowe, staliwa)	C=0,55-0,80\%	St7, 55, 60, 65, 60G, N5	60-65	42-56
4	Stale niestopowe (np. narzędziowe)	C=0,80-1,40\%	N9, N12	55-60	39-52
5	Stale niskostopowe (np. do nawęglania, do azotowania, do ulepszania cieplnego)	$\begin{aligned} & (150-260 \mathrm{HB}) \\ & \text { (do } 26,5 \mathrm{HRC}) \end{aligned}$	18G2A, 20H, 20HG, 18HGM, 15HN, $38 \mathrm{HMJ}, 30 \mathrm{G} 2,30 \mathrm{H}, 40 \mathrm{H}, 25 \mathrm{HM}, 36 \mathrm{HM}$	70-75	47-65
6	Stale niskostopowe (np. do nawęglania, do azotowania, do ulepszania cieplnego, sprężynowe)	$\begin{aligned} & (220-450 \mathrm{HB}) \\ & (20,5-48 \mathrm{HRC}) \end{aligned}$	17HNM, 18H2N2, 25H3M, 30HGS, 40HM, 35HGS, 38HNM, 4OHNM, 45HN2A, 12H2N4, 25HGS, 65G, 50HG	55-60	37-52
7	Stale wysokostopowe (np. narzędziowe do pracy na zimno i na gorąco)	$\begin{aligned} & \text { (150-260HB) } \\ & \text { (do } 26,5 \mathrm{HRC} \text {) } \end{aligned}$	NV, NMV, NC4, WCL, WNL	50-55	16-21
8	Stale wysokostopowe (np. narzędziowe do pracy na zimno i na gorąco)	$\begin{aligned} & (220-450 \mathrm{HB}) \\ & (20,5-48 \mathrm{HRC}) \end{aligned}$	NC10, NM, NZ3, NPW, WWN2	35-40	9*-13
9	Stale wysokostopowe (np. stal szybkotnąca)	$\begin{aligned} & \text { (150-250HB) } \\ & \text { (do 25HRC) } \end{aligned}$	SW12, SK5, SK10	35	$11^{*}-14$
10	Stale nierdzewne	Ferrytyczne i martenzytyczne	OH13, 3H13, 4H13, OH17T, H17, H17N2, 3H17M	35-40	21-28
11	Stale nierdzewne (kwasoodporne, żaroodporne)	Austenityczne	H13N4G9, 2H18N9, 1H18N9, H17N13M2, H26N4, H23N18, H16N, 36S2	30-35	17-22

* im większy detal tym większa wartość wydajności
** im większy detal tym mniejsza prędkość

Czas cięcia $=\frac{\text { Przekrój }}{\text { Wydajność }}$

Przykład:
Obliczanie czasu cięcia wałka o średnicy 200 mm wykonanego ze stali konstrukcyjnej St5:
Wydajność cięcia dobrana z tabeli wynosi $47-65 \mathrm{~cm}^{2} / \mathrm{min}$ - przyjmuję $50 \mathrm{~cm}^{2} / \mathrm{min}$ (duży detal)
Przekrój $=\left(3,14^{*} 20^{2}\right) / 4=314 \mathrm{~cm}^{2}$
Czas cięcia $=314 / 50=6,28 \mathrm{~min}=6 \mathrm{~min} 17 \mathrm{sek}$.
Prędkość taśmy $=65-70 \mathrm{~m} / \mathrm{min}$

Dobór podziałki uzębienia dla pakietów:

Onsunek

CECHY / KORZYŚCI:
taśma bimetaliczna

- wierzchołki zębów wykonane ze stali szybkotnącej kobaltowej M42 o 8\% zawartości kobaltu zapewniają wysoką żywotnośc
- kształt zęba gwarantuje wysoką wydajność pracy i jakość powierzchni materiału po cięciu
- korpus piły wykonany ze stali sprężynowej zapewniającej odpowiednią elastyczność
- zgrzew taśmy wykonany na najnowocześniejszym urządzeniu zapewnia wys. wytrzymałość piły

ZASTOSOWANIE:

- popularna taśma przeznaczona do produkcyjnego cięcia większości gatunków materiałów od aluminium do stali nierdzewnych
- w zależności od wielkości podziałki uzębienia przeznaczone są do przecinania materiatów petnych oraz rur i kształtowników
- kształt uzębienia PC-S stosuje się przy cięciu cienkościennych rur i profili wykonanych Z większości materiałów
kształt uzębienia PC-L stosowany jest do cięcia średnich i dużych elementów cięcie podatne na wibracje

	Index	\longrightarrow	~			Geometria	J.m.	4	$\|\mid$
		mm	mm	mm				szt.	
0	PX100-1306-0001	wg zamówienia	13	0,6	6/10	PC-S	mb	5	5900855113861
0	PX100-1306-0002	wg zamówienia	13	0,6	8/12	PC-S	mb	5	5900855113878
0	PX100-1306-0003	wg zamówienia	13	0,6	10/14	PC-S	mb	5	5900855113885
0	PX100-1306-0004	wg zamówienia	13	0,6	14/18	PC-S	mb	5	5900855113892
0	PX100-2009-0001	wg zamówienia	20	0,9	4/6	PC-M	mb	5	5900855113908
0	PX100-2009-0002	wg zamówienia	20	0,9	5/8	PC-M	mb	5	5900855113915
0	PX100-2009-0003	wg zamówienia	20	0,9	6/10	PC-S	mb	5	5900855113922
0	PX100-2009-0004	wg zamówienia	20	0,9	8/12	PC-S	mb	5	5900855113939
0	PX100-2009-0005	wg zamówienia	20	0,9	10/14	PC-S	mb	5	5900855113946
0	PX100-2709-0001	wg zamówienia	27	0,9	2/3	PC-L	mb	5	5900855113953
0	PX100-2709-0002	wg zamówienia	27	0,9	3/4	PC-L	mb	5	5900855113960
0	PX100-2709-0003	wg zamówienia	27	0,9	4/6	PC-M	mb	5	5900855113977
0	PX100-2709-0004	wg zamówienia	27	0,9	5/8	PC-M	mb	5	5900855113984
0	PX100-2709-0005	wg zamówienia	27	0,9	6/10	PC-S	mb	5	5900855113991
0	PX100-2709-0006	wg zamówienia	27	0,9	8/12	PC-S	mb	5	5900855114004
0	PX100-2709-0007	wg zamówienia	27	0,9	10/14	PC-S	mb	5	5900855114011
0	PX100-3411-0001	wg zamówienia	34	1,1	2/3	PC-L	mb	5	5900855114028
0	PX100-3411-0002	wg zamówienia	34	1,1	3/4	PC-L	mb	5	5900855114035
0	PX100-3411-0003	wg zamówienia	34	1,1	4/6	PC-M	mb	5	5900855114042
0	PX100-3411-0004	wg zamówienia	34	1,1	5/8	PC-M	mb	5	5900855114059
0	PX100-3411-0005	wg zamówienia	34	1,1	6/10	PC-S	mb	5	5900855114066
0	PX100-4113-0001	wg zamówienia	41	1,3	2/3	PC-L	mb	5	5900855114073
0	PX100-4113-0002	wg zamówienia	41	1,3	3/4	PC-L	mb	5	5900855114080
0	PX100-4113-0003	wg zamówienia	41	1,3	4/6	PC-M	mb	5	5900855114097
0	PX100-4113-0004	wg zamówienia	41	1,3	5/8	PC-M	mb	5	5900855114103
0	PX100-4113-0005	wg zamówienia	41	1,3	6/10	PC-S	mb	5	5900855114110

Legenda: \mathbf{O} - na zamówienie

Piła taśmowa bimetalowa serii PROF-CUT Plus

CECHY / KORZYŚCI

- taśma bimetaliczna
- wierzchotki zębów wykonane ze stali szybkotnącej kobaltowej

M42 o 8\% zawartości kobaltu zapewniają wysoką zywotność

- kształt zęba gwarantuje wysoką wydajność pracy i jakość powierzchni materiału po cięciu
- korpus piły wykonany ze stali sprężynowej zapewniającej odpowiednią elastyczność
zgrzew taśmy wykonany na najnowocześniejszym urządzeniu zapewnia wys. wytrzymałość piły

ZASTOSOWANIE:

- przeznaczone do produkcyjnego cięcia większości gatunków materiałów od aluminium do stali nierdzewnych
> szczególnie dedykowane do cięcia stali wysokostopowych
I materiatow trudnoobrabialnych
- w zależności od wielkości podziałki uzębienia przeznaczone sa do przecinania materiałów petnych oraz rur i kształtowników

| | Index | \sim | ~n; | | | \leftrightarrows | Geometria | J.m. | 4 | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | mm | mm | mm | | - | | | szt. | |
| 0 | PX110-2009-0001 | wg zamówienia | 20 | 0,9 | 4/6 | 8° | PC-M | mb | 5 | 5900855130400 |
| 0 | PX110-2009-0002 | wg zamówienia | 20 | 0,9 | 5/8 | 8° | PC-M | mb | 5 | 5900855130417 |
| 0 | PX110-2009-0003 | wg zamówienia | 20 | 0,9 | 6/10 | 0° | PC-S | mb | 5 | 5900855130424 |
| 0 | PX110-2009-0004 | wg zamówienia | 20 | 0,9 | 8/12 | 0° | PC-S | mb | 5 | 5900855130431 |
| 0 | PX110-2009-0005 | wg zamówienia | 20 | 0,9 | 10/14 | 0° | PC-S | mb | 5 | 5900855130448 |
| 0 | PX110-2709-0001 | wg zamówienia | 27 | 0,9 | 2/3 | 10° | PC-L | mb | 5 | 5900855130455 |
| 0 | PX110-2709-0002 | wg zamówienia | 27 | 0,9 | 3/4 | 10° | PC-L | mb | 5 | 5900855130462 |
| 0 | PX110-2709-0003 | wg zamówienia | 27 | 0,9 | 4/6 | 8° | PC-M | mb | 5 | 5900855130479 |
| 0 | PX110-2709-0004 | wg zamówienia | 27 | 0,9 | 5/8 | 8° | PC-M | mb | 5 | 5900855130486 |
| 0 | PX110-2709-0005 | wg zamówienia | 27 | 0,9 | 6/10 | 0° | PC-S | mb | 5 | 5900855130493 |
| 0 | PX110-2709-0006 | wg zamówienia | 27 | 0,9 | 8/12 | 0° | PC-S | mb | 5 | 5900855130509 |
| 0 | PX110-3411-0001 | wg zamówienia | 34 | 1,1 | 2/3 | 10° | PC-L | mb | 5 | 5900855130516 |
| 0 | PX110-3411-0002 | wg zamówienia | 34 | 1,1 | 3/4 | 10° | PC-L | mb | 5 | 5900855130523 |
| 0 | PX110-3411-0003 | wg zamówienia | 34 | 1,1 | 4/6 | 8° | PC-M | mb | 5 | 5900855130530 |
| 0 | PX110-3411-0004 | wg zamówienia | 34 | 1,1 | 5/8 | 8° | PC-M | mb | 5 | 5900855130547 |
| 0 | PX110-4113-0001 | wg zamówienia | 41 | 1,3 | 2/3 | 10° | PC-L | mb | 5 | 5900855130554 |
| 0 | PX110-4113-0002 | wg zamówienia | 41 | 1,3 | 3/4 | 10° | PC-L | mb | 5 | 5900855130561 |
| \bigcirc | PX110-4113-0003 | wg zamówienia | 41 | 1,3 | 4/6 | 8° | PC-M | mb | 5 | 5900855130578 |

Piła taśmowa bimetalowa serii UNI-CUT
PX200
do cięcia metali

CECHY / KORZYŚC:

- taśma bimetaliczna
- dzięki zastosowaniu odpowiedniej sekwencji zębów piła charakteryzuje się małymi wibracjami, niezależnie od przecinanego ksztaltu materiału obrabianego
- wierzchołki zębów wykonane ze stali szybkotnącej kobaltowej M42 o 8\% zawartości kobaltu zapewniają wysoką zywotnośc
- korpus piły wykonany ze stali sprężynowej zapewniającej odpowiednią elastyczność
- zgrzew taśmy wykonany na najnowocześniejszym urządzeniu zapewniającym wysoką wytrzymałość piły

ZASTOSOWANIE:

- supernowoczesne narzędzie przeznaczone do uniwersalnych zastosowań
- specjalny kształt uzębienia z powiększoną przestrzenią międzyzẹbną oraz wzmocnionymi wierzchotkami
- kształt zębów pozwala na cięcie detali cienkościennych jak i przekrojów pełnych bez konieczności precyzyjnego doboru podziałki uzębienia

	Index	\sim				Geometria	J.m.	4	$\|\mid$
		mm	mm	mm				szt.	
0	PX200-1306-0001	wg zamówienia	13	0,6	8/10	UC-L	mb	5	5900855114127
0	PX200-1306-0002	wg zamówienia	13	0,6	9/11	UC-M	mb	5	5900855114134
0	PX200-1306-0003	wg zamówienia	13	0,6	11/13	UC-S	mb	5	5900855114141
0	PX200-2009-0001	wg zamówienia	20	0,9	5/7	UC-L	mb	5	5900855114158
0	PX200-2009-0002	wg zamówienia	20	0,9	8/10	UC-M	mb	5	5900855114165
0	PX200-2009-0003	wg zamówienia	20	0,9	9/11	UC-S	mb	5	5900855114172
0	PX200-2709-0001	wg zamówienia	27	0,9	4/5	UC-L	mb	5	5900855114189
0	PX200-2709-0002	wg zamówienia	27	0,9	6/8	UC-M	mb	5	5900855114196
0	PX200-2709-0003	wg zamówienia	27	0,9	9/11	UC-S	mb	5	5900855114202
0	PX200-3411-0001	wg zamówienia	34	1,1	4/5	UC-L	mb	5	5900855114219
0	PX200-3411-0002	wg zamówienia	34	1,1	5/7	UC-M	mb	5	5900855114226
\bigcirc	PX200-3411-0003	wg zamówienia	34	1,1	8/10	UC-S	mb	5	5900855114233

[^4]
BRZESZCZOTY MASZYNOWE BRZESZCZOTY PIŁEK RECZNYCH

Dobór ilości zębów oraz grubości ciętego materiału:

Ilość zębów na 25 mm	Najmniejsza grubość ciętego materiału min
4	$14,5 \mathrm{~mm}$
6	$9,5 \mathrm{~mm}$
8	$7,2 \mathrm{~mm}$
10	$5,7 \mathrm{~mm}$
14	$4,1 \mathrm{~mm}$

Dobór uzębienia i szybkości cięcia brzeszczotami maszynowymi:

Materiał	llość zębów na 25 mm	Ilość skoków suwaka na minutę
Aluminium	$4-6$	120
Brązy twarde	$6-8-10$	$60-90$
Brązy miękkie	$4-6$	$60-90$
Żeliwo twarde	$6-8-10$	$60-90$
Żeliwo miękkie	$4-6$	$90-120$
Mosiądz twardy	$6-8-10$	90
Mosiądz miękki	$4-6$	120
Stal węglowa miękka	$4-6$	120
Niskostopowa stal konstrukcyjna	$4-6$	120
Wysokostopowa stal konstrukcyjna	$6-8-10$	$90-120$
Niskostopowa stal narzędziowa	$6-8-10$	120
Wysokostopowa stal narzędziowa	$6-8-10-14$	90
Stale szybkotnące	$6-8-10-14$	90

Brzeszczot maszynowy HSS

BM100
do pilarek ramowych

CECHY / KORZYŚCI:

- wykonane ze stali szybkotnącej HSS-DMo5 (SW7M) według normy PN-72/M-63200
- odpowiednio wykonana obróbka cieplna pozwala na uzyskanie wysokiej twardości brzeszczotów z zachowaniem odpowiedniej struktury materiału
- dodatkowy zabieg wysokiego odpuszczania części chwytowej
zapobiega pękaniu brzeszczotów podczas mocowania oraz w trakcie pracy
- możliwość wykonania brzeszczotów na zamówienie, także wg. norm DIN oraz AS i BS

ZASTOSOWANIE:

- przeznaczone do cięcia takich materiałów jak pręty i profile ze stopów żelaza oraz metali kolorowych
- w celu zwiększenia żywotności zalecane jest stosowanie cieczy
chłodzącej podczas procesu cięcia
- brzeszczoty stosowane w pilarkach ramowych

| INDEX | 里再 | $0 \text { (oun }$ | | | | | \||||||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | | mm | szt. | |
| BM100-0300-0002 | 300 | 25 | 1,25 | 6 | 8,2 | 3 | 5900855000093 |
| BM100-0300-0001 | 300 | 32 | 1,60 | 6 | 8,2 | 3 | 5900855000086 |
| BM100-0350-0001 | 350 | 32 | 1,60 | 6 | 8,2 | 3 | 5900855000147 |
| BM100-0350-0002 | 350 | 32 | 2,00 | 6 | 8,2 | 3 | 5900855000154 |
| BM100-0400-0002 | 400 | 32 | 1,60 | 6 | 8,2 | 3 | 5900855000239 |
| BM100-0400-0006 | 400 | 32 | 1,60 | 10 | 8,2 | 3 | 5900855000277 |
| BM100-0400-0003 | 400 | 32 | 2,00 | 6 | 8,2 | 3 | 5900855000246 |
| BM100-0400-0004 | 400 | 40 | 2,00 | 6 | 8,2 | 3 | 5900855000253 |
| BM100-0450-0001 | 450 | 32 | 1,60 | 6 | 10,2 | 3 | 5900855000314 |
| BM100-0450-0002 | 450 | 32 | 2,00 | 6 | 10,2 | 3 | 5900855000321 |
| BM100-0450-0004 | 450 | 40 | 2,00 | 4 | 10,2 | 3 | 5900855000345 |
| BM100-0450-0005 | 450 | 40 | 2,00 | 6 | 10,2 | 3 | 5900855000352 |
| BM100-0450-0006 | 450 | 40 | 2,00 | 8 | 10,2 | 3 | 5900855000369 |
| BM100-0450-0009 | 450 | 40 | 2,00 | 10 | 10,2 | 3 | 5900855000390 |
| BM100-0500-0007 | 500 | 40 | 2,00 | 4 | 10,2 | 3 | 5900855000475 |
| BM100-0500-0001 | 500 | 40 | 2,00 | 6 | 10,2 | 3 | 5900855000413 |
| BM100-0500-0004 | 500 | 40 | 2,00 | 8 | 10,2 | 3 | 5900855000444 |
| BM100-0500-0003 | 500 | 40 | 2,50 | 6 | 10,2 | 3 | 5900855000437 |
| BM100-0550-0002 | 550 | 40 | 2,00 | 6 | 12,2 | 3 | 5900855000529 |
| BM100-0550-0001 | 550 | 50 | 2,50 | 6 | 12,2 | 3 | 5900855000512 |
| BM100-0600-0001 | 600 | 50 | 2,50 | 4 | 12,2 | 3 | 5900855000574 |
| BM100-0600-0002 | 600 | 50 | 2,50 | 6 | 12,2 | 3 | 5900855000581 |
| BM100-0600-0003 | 600 | 50 | 2,50 | 8 | 12,2 | 3 | 5900855000598 |

CECHY / KORZYŚCI:

- wykonane ze stali szybkotnącej HSS-DMo5 (SW7M)
- odpowiednio wykonana obróbka cieplna pozwala na uzyskanie wysokiej twardości
brzeszczotów z zachowaniem odpowiedniej struktury materiatu
- dodatkowy zabieg wysokiego odpuszczania części chwytowej
zapobiega pękaniu brzeszczotów podczas mocowania oraz w trakcie pracy

ZASTOSOWANIE
cięcie stali miękkiej, twardych tworzyw sztucznych i metali kolorowych

- szczególnie zalecane do cięcia krzywoliniowego
- wykonywanie łuków o małych promieniach

| Index | (ф~ル | (onno) | | $\overbrace{0}^{\frac{110}{1.2 .0}}$ | (oun) | 4 | \||||||||||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | | mm | szt. | |
| - BM600-0318-0001 | 318 | 27 | 1,60 | 10 | $2 \times 8,0$ | 3 | 5900855001274 |

Legenda: O-na zamówienie

Brzeszczot długi - NPMd-P
BM700

CECHY / KORZYŚCI:

- wykonane ze stali szybkotnącej HSS-DMo5 (SW7M)
- odpowiednio wykonana obróbka cieplna pozwala na uzyskanie wysokiej twardości
brzeszczotów z zachowaniem odpowiedniej struktury materiału
- dodatkowy zabieg wysokiego odpuszczania części chwytowej zapobiega pękaniu
brzeszczotów podczas mocowania oraz w trakcie pracy

ZASTOSOWANIE

- cięcie stali miękkiej, twardych tworzyw sztucznych i metali kolorowych
- zalecane do cięcia prostoliniowego
- stosowane w elektronarzędziach o napędzie pneumatycznym

[^5]

CECHY / KORZYŚCl:

- wykonane z wysokiej jakości niemieckiej stali narzędziowej „Carbon STEEL"
frezowane zęby z wykorzystaniem specjalnych frezów ślimakowych pozwalaja na otrzymanie uzębienia o wtaściwej i odpowiednio dobranej geometrii
- proces kształtowania uzębienia zwany również falowaniem, zapewnia ptynną pracę brzeszczotu oraz eliminuje zjawisko zakleszczania uzębienia w czasie cięcia
- w petni monitorowany proces indukcyjnego hartowania brzeszczotów gwarantuje uzyskanie właściwej twardości oraz elastyczności uzębienia, co zapobiega ich włtamywaniu w trakcie cięcia

| Index | (ф~~ | (oun | | 4 | \||||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | | szt. | |
| BP100-0300-0004 | 300 | 12,5 | 24 | 144 | 5900855001397 |

ZASTOSOWANIE:

- stosowane do cięcia krzywoliniowego i prostego miękkich stopów żelaza, metali kolorowych oraz tworzyw sztucznych
brzeszczoty wąskie jednostronne
- prawidłowy naciąg brzeszczotu zapobiega schodzeniu z linii cięcia
- przeznaczone do ramek ręcznych

Brzeszczot piłek ręcznych - typ RAMb

BP105

ZASTOSOWANIE:

- stosowane do cięcia krzywoliniowego i prostego miękkich stopów żelaza,
metali kolorowych oraz tworzyw sztucznych
- brzeszczoty wąskie dwustronne
- prawidłowy naciagg brzeszczotu zapobiega schodzeniu z linii cięcia
- przeznaczone do ramek ręcznych

CECHY / KORZYŚCl:

- wykonane z wysokiej jakości niemieckiej stali narzędziowej „Carbon STEEL"
- frezowane zęby z wykorzystaniem specjalnych frezów ślimakowych pozwalają na otrzymanie uzębienia o właściwej i odpowiednio dobranej geometrii
- proces kształtowania uzębienia zwany również falowaniem, zapewnia płynną pracę brzeszczotu oraz eliminuje zjawisko zakleszczania uzębienia w czasie cięcia
- w petni monitorowany proces indukcyjnego hartowania brzeszczotów gwarantuje uzyskanie właściwej twardości oraz elastyczności uzębienia, co zapobiega ich wyłamywaniu w trakcie cięcia

CECHY / KORZYŚCI:

- wykonane z wysokiej jakości niemieckiej stali narzędziowej „Carbon STEEL
- frezowane zęby z wykorzystaniem specjalnych frezów ślimakowych pozwalają na otrzymanie uzębienia o właściwej i odpowiednio dobranej geometrii
- proces ksztattowania uzębienia zwany również falowaniem, zapewnia ptynną pracę brzeszczotu oraz eliminuje zjawisko zakleszczania uzębienia w czasie cięcia
- w petni monitorowany proces indukcyjnego hartowania brzeszczotów gwarantuje uzyskanie właściwej twardości oraz elastyczności uzębienia, co zapobiega ich wytamywaniu w trakcie cięcia

ZASTOSOWANIE:

- stosowane do cięcia krzywoliniowego i prostego miękkich stopów żelaza, metali kolorowych oraz tworzyw sztucznych
brzeszczoty wąskie dwustronne
- prawidłowy naciąg brzeszczotu zapobiega schodzeniu z linii cięcia
- przeznaczone do ramek ręcznych

| Index | (ф~~ | 0 | 年 | \square | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | | szt. | |
| BP110-0300-0005 | 300 | 12,5 | 24/24 | 144 | 5900855050722 |

24/24

| Index | (\%un) ${ }^{\text {¢ }}$ | (oun | | 4 | \|||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | | szt. | |
| BP105-0300-0004 | 300 | 25 | 24/24 | 72 | 5900855047074 |

CECHY / KORZYŚCI:

- wykonane z wysokiej jakości niemieckiej stali narzędziowej „Carbon STEEL"
- frezowane zęby z wykorzystaniem specjalnych frezów ślimakowych pozwalaja
na otrzymanie uzębienia o właściwej i odpowiednio dobranej geometri
- proces ksztaltowania uzębienia zwany również falowaniem, zapewnia płynną pracę brzeszczotu oraz eliminuje zjawisko zakleszczania uzębienia w czasie cięcia
- w petni monitorowany proces indukcyjnego hartowania brzeszczotów gwarantuje uzyskanie właściwej twardości oraz elastyczności uzębienia, co zapobiega ich wytamywaniu w trakcie cięcia
- wyposażony w dwa rodzaje uzębienia: do cięcia detali stalowych i metali kolorowych
oraz ząb specjalny o większej podziałce do cięcia drewna

ZASTOSOWANIE:

- stosowane do cięcia krzywoliniowego i prostego miękkich stopów żelaza, metali kolorowych, tworzyw sztucznych oraz drewna
- brzeszczoty szerokie dwustronne
- prawidłowy naciąg brzeszczotu zapobiega schodzeniu z linii cięcia
- przeznaczone do ramek ręcznych

| Index | (6~~~ | (omolit | 年 | 4 | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | | szt. | |
| BP115-0300-0003 | 300 | 25 | 24/8 | 72 | 5900855047098 |

CECHY / KORZYŚCl:

- wykonane z wysokiej jakości stali szybkotnącej HSS
- frezowane zęby z wykorzystaniem specjalnych frezów ślimakowych pozwalają na otrzymanie uzębienia o właściwej i odpowiednio dobranej geometrii
- proces kształtowania uzębienia zwany również falowaniem, zapewnia ptynną pracę
brzeszczotu oraz eliminuje zjawisko zakleszczania uzębienia w czasie cięcia
- w petni monitorowany proces hartowania i odpuszczania brzeszczotów gwarantuje uzyskanie
wtaściwej twardości oraz elastyczności uzębienia, co zapobiega ich wyłamywaniu w trakcie cięcia

ZASTOSOWANIE

- stosowane do cięcia prostego i krzywoliniowego stopów żelaza metali kolorowych oraz tworzyw sztucznych
- wysoka twardość taśmy brzeszczotu gwarantuje znacznie dłuższą żywotność
- możliwość cięcia stali trudnoobrabialnych
- brzeszczoty szerokie dwustronne

| Index | (阝) | (ouno) | | 4 | \|||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | | szt. | |
| BP210-0300-0002 | 300 | 25 | 24/24 | 5 | 5900855001588 |
| BP210-0300-0001 | 300 | 25 | 24/24 | 72 | 5900855001571 |

CECHY / KORZYŚCI:

- wykonane z taśmy bimetalowej: strefa uzębiona wykonana ze stali szybkotnącej, a korpus brzeszczotu ze stali o dużej elastycznośc
- frezowane zęby z wykorzystaniem specjalnych frezów ślimakowych pozwalaja na otrzymanie uzębienia o właściwej i odpowiednio dobranej geometrii
- proces kształtowania uzębienia zwany również falowaniem, zapewnia płynną pracę brzeszczotu oraz eliminuje zjawisko zakleszczania uzębienia w czasie cięcia
- w petni monitorowany proces indukcyjnego hartowania brzeszczotów gwarantuje uzyskanie właściwej twardości oraz elastyczności uzębienia, co zapobiega ich wyłamywaniu w trakcie cięcia

Bi-Metal Mu MAN

ZASTOSOWANIE:

- stosowane do cięcia krzywoliniowego i prostego stopów żelaza, metali kolorowych oraz tworzyw sztucznych
- brzeszczoty bi-metalowe nie stwarzają ryzyka pęknięcia w trakcie użytkowania
- możliwość cięcia stali trudnoobrabialnych
- brzeszczoty wąskie jednostronne

| Index | (4) | (ouno) | $0^{\left.\frac{1^{\prime \prime}}{1,2,3}\right)_{0}}$ | | | \|||| |||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | | szt. | szt. | |
| BP300-0300-0021 | 300 | 12,5 | 24 | 144 | - | 5900855148122 |

Index	क~~~	(ounos)	$)_{0}^{\stackrel{10}{1,2,3}}$	Info	\square		$\|\mid$
	mm	mm		szt.	bl	b	
BP300-0300-0022	300	12,5	24	10	1	25	5900855155618

FREZY TRZPIENIOWE HM FREZY TRZPIENIOWE HSS WIERTŁA HSS
do PVC

Index	为	$\xrightarrow{\sim}$	\longrightarrow	\longrightarrow	θ	$8 \leq 8$	4	$\|\mid$
	mm	mm	mm	mm			szt.	
- LS070-0005-0003	5	15	80	8	1 pozytyw	P	1	5900855120876
O LS070-0005-0001	5	15-25	80	8	1 pozytyw	P	1	5900855119054
- LS070-0006-0002	6	15	80	8	1 pozytyw	P	1	5900855132510
- LS070-0006-0003	6	15-25	80	8	1 pozytyw	P	1	5900855132527
- LS070-0008-0008	8	25	80	8	1 pozytyw	P	1	5900855155076

CECHY / KORZYŚCl:

- frezy petnowęglikowe - korpus oraz część robocza wykonana z węglika spiekanego
- specialna geometria ostrza oraz ułożenie spirali pozwala na łatwe odprowadzenie wiórów i otrzymanie gładkiej powierzchni materiału obrabianego
- możliwość pokrywania części roboczej freza powłokami uszlachetniającymi znacznie zwiększajacymi żywotność narzędzia
- petny zakres mozziliwości serwisowych/ustug posprzedażnych: ostrzenie, regeneracja czota, etc.
- możliwość wykonywania frezów od średnicy 3 mm

ZASTOSOWANIE:

- frezowanie i wiercenie rowków odwodniających oraz otworów do zamocowania zawiasów. klamek w oknach
- wykańczajacce frezowanie waskiej płaszczyzny prosto i krzywoliniowe w tworzywach sztucznych
- wiercenie otworów w tworzywach sztucznych
- stosowane na frezarkach górnowrzecionowych i wysokowydajnych centrach obróbczych CNC z posuwem mechanicznym

| Index | | $\xrightarrow{\square}$ | \sim | \longrightarrow | θ | 8 | 4 | \|||| ||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | mm | | | szt. | |
| - LS071-0003-0001 | 3 | 20 | 70 | 8 | 1 pozytyw | P | 1 | 5900855242271 |
| O LS071-0005-0013 | 5 | 32 | 80 | 5 | 1 pozytyw | P | 1 | 5900855242288 |
| - LS071-0005-0005 | 5 | 35 | 80 | 5 | 1 pozytyw | P | 1 | 5900855242295 |
| - LS071-0005-0002 | 5 | 36 | 80 | 5 | 1 pozytyw | P | 1 | 5900855242301 |
| - LS071-0005-0009 | 5 | 35 | 80 | 8 | 1 pozytyw | P | 1 | 5900855242318 |
| O LS071-0005-0014 | 5 | 35 | 100 | 8 | 2 pozytyw | P | 1 | 5900855242325 |
| - LS071-0005-0001 | 5 | 38 | 80 | 8 | 1 pozytyw | P | 1 | 5900855242332 |
| - LS071-0005-0006 | 5 | 30-50 | 100 | 8 | 1 pozytyw | P | 1 | 5900855242349 |
| O LS071-0008-0001 | 8 | 35-50 | 100 | 8 | 1 pozytyw | P | 1 | 5900855242356 |

CECHY / KORZYŚCl:

- frezy petnowęglikowe - korpus oraz część robocza wykonana z węglika spiekanego
- możliwość wykonania frezów w średnicach $4 \div 20 \mathrm{~mm}$, przy różnej długości całkowitej oraz rozznej duggości częsci roboczej
- specjalna geometria ostrza oraz ułożenie spirali pozwala na łatwe odprowadzenie wiórów i otrzymanie gładkiej powierzchni materiału obrabianego
- możliwość wykonania frezów z węglika spiekanego o podwyższonej wytrzymałości oraz udarności charakteryzujacej się ziarnem ULTRA NANO GRAIN
- możliwość pokrywania części roboczej freza powłokami uszlachetniającymi - np. diamentowa, znacznie zwiększającą żywotność narzzędzia

ZASTOSOWANIE:

- wykańczajace frezowanie wąskiej płaszczyzny prosto i krzywoliniowe
- wiercenie otworów w tworzywach drewnopochodnych i drewnie
- frezowanie i wiercenie rowków odwodniajacych oraz otworów do zamocowania zawiasów klamek w oknach
- posuwy od $2 \div 12 \mathrm{~m} / \mathrm{min}$ - w zależności od średnicy narzędzia, ilości ostrzy oraz rodzaju materiatu obrabianego
- stosowane na frezarkach górnowrzecionowych i wysokowydajnych centrach obróbczych CNC z posuwem mechanicznym

| Index | mes | $\xrightarrow{\longrightarrow}$ | \longrightarrow | \bigcirc | Δ | 8 | 4 | \|||||||||||||||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | mm | mm | mm | | | szt. | |
| LS220-0006-0001 | 6 | 22 | 70 | 8 | 2 pozytyw | P | 1 | 5900855086431 |
| LS220-0008-0001 | 8 | 32 | 80 | 8 | 2 pozytyw | P | 1 | 5900855086448 |
| LS220-0010-0001 | 10 | 42 | 90 | 10 | 2 pozytyw | P | 1 | 5900855086455 |
| LS220-0012-0001 | 12 | 42 | 90 | 12 | 2 pozytyw | P | 1 | 5900855086462 |

Frez pełnowęglikowy (teowy)

LS232
do czyszczenia naroży PVC

CECHY / KORZYŚCl:

- frezy petnowęglikowe - korpus oraz część robocza wykonana z węglika spiekanego
- możliwość wykonania frezów w średnicach $2 \div 20 \mathrm{~mm}$, przy różnej długości całkowite oraz roznej długosci częsci roboczej
- specjalna geometria ostrza pozwala na łatwe odprowadzenie wiórów
i otrzymanie gładkiej powierzchni materiału obrabianego
- możliwość wykonania frezów z węglika spiekanego o podwyższonej wytrzymałośc oraz udarności charakteryzującej się ziarnem ULTRA NANO GRAIN

ZASTOSOWANIE:

- specjalistyczne frezy trzpieniowe realizujące proces czyszczenia wewnętrznej strony narożnika okna PVC
- frez mający za zadanie usuwanie wyptywki po zgrzaniu profili PVC
seria dedykowana do specjalistycznych maszyn przy produkcji stolarki otworowe z tworzyw sztucznych PVC
- posuwy od $2 \div 12 \mathrm{~m} / \mathrm{min}$ - w zależności od średnicy narzędzia oraz rodzaju materiału obrabianego

Podgrupa

[^6]

CECHY / KORZYŚCl:

- wykonane z wysokiej jakości stali szybkotnącej HSS
- charakteryzują się wysoką stabilnością krawędzi i trwałością ostrzy
- frezy o zwiększonej odporności na wykruszenia
- możliwość wykonywania frezów walcowo-czołowych gładkich oraz z łamaczem wióra w zaleznosci od dedykowanego przeznaczenia
- możliwość wykonywania frezów od średnic 4 mm do 25 mm
- w celu zwiększenia żywotności, zalecamy zastosowanie powłok uszlachetniających (TiN, TiCN, etc.)

ZASTOSOWANIE:

- frezowanie rowków w profilach okiennych wykonanych z PVC, aluminium oraz wkładek stalowych wzmacniających profil
- wiercenie otworów w proflach okiennych z PVC, aluminium oraz wkładkach stalowych wzmacniających profil
- do obróbki metali trudnoobrabialnych zalecamy zastosowanie frezów ze stali HSS-E, o zwiększonej zawartości kobaltu
- zastosowanie powłok uszlachetniających powierzchnię frezów zwiększa żywotność nawet do 50% w stosunku do narzędzi bez powłoki
- stosowane na centrach obróbczych oraz frezarkach i frezarko-kopiarkach

Legenda: O-na zamówienie

CECHY / KORZYŚCl:

> ostrze i korpus wykonane ze stali szybkotnącej HSS

- wiertła prawoskrętne lub lewoskrętne z gwintem zewnętrznym
- mozliwosć wykonania wiertet w wersji ze stali HSS-E i/lub w wersji z pilotem
- zastosowanie pilota ułatwia wwiercenia się w materiak, zmniejsza opory skrawania i pozwala na uzyskanie lepszej jakości obrabianej powierzchni

ZASTOSOWANIE:

> do wiercenia otworów pod klamki w profilach PVC i innych tworzywach sztucznych

- wiercenie w profilach z lub bez zamontowanego wzmocnienia stalowego
- w celu wydłuzenia zywotności narzędzia, zaleca się zastosowanie wierteł ze stali HSS-E (o zWiększonej zawartości kobaltu)
wiertła przeznaczone do pracy na centrach obróbczych oraz na wiertarkach pionowych i poziomych

Legenda: ○-na zamówienie

[^0]: Legenda: il - ilość otworów zabierakowych, d_{o} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworôw.

[^1]: Legenda: il - ilość otworów zabierakowych, d_{o} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów, O -na zamówienie.

[^2]: Legenda: il - ilość otworów zabierakowych, d_{0} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów, O-na zamówienie,

[^3]: Legenda: il - ilość otworów zabierakowych, d_{o} - średnica otworów zabierakowych, d_{p} - średnica podziałowa otworów.

[^4]: Legenda: O-na zamówienie

[^5]: Legenda: \mathbf{O}-na zamówienie

[^6]: Legenda: O -na zamówienie

